

B.voc in PHYSIOTHERAPHY

SCHOOL OF VOCATIONAL STUDIES

(SVS)

B.voc

In

Physiotherapy

Duration – 3 years (6 Semester)

Maximum Duration – 6 years

Curriculum Structure

GLOCAL UNIVERSITY

Objective

Vocational and skill-based education is gaining increasing significance over time. The Bachelor of Vocation (B.Voc) is an emerging course in India designed to equip candidates with the specific skills required for various trades. Unlike traditional academic programs that focus heavily on theoretical knowledge, the B.Voc course emphasizes application-based studies.

The University Grants Commission (UGC) has introduced a scheme for skills development within higher education, integrating it into college and university curriculums. This initiative leads to a Bachelor of Vocation (B.Voc) degree, which includes multiple exit points such as Diploma and Advanced Diploma under the National Skills Qualifications Framework (NSQF). The B.Voc program focuses on providing undergraduate education that includes specific job roles along with a broad-based general education. Graduates of the B.Voc program are thus prepared to significantly contribute to India's economy through appropriate employment, entrepreneurship, and knowledge creation.

The proposed vocational program in **Physiotherapy** from Glocal University is a well-balanced combination of technical skills, professional education related to physiotherapy practices, and relevant general education content. This program is designed to equip students to navigate emerging trends and challenges in the field of physiotherapy. By integrating both theoretical and practical aspects of physiotherapy principles and patient care techniques, the program aims to prepare students for various professional opportunities, including rehabilitation therapy, pain management, sports injury management, posture correction, and physiotherapy analytics in diverse healthcare settings.

Program Objective

The B. Voc program in **Physiotherapy** aims to bridge the gap between traditional academic learning and practical application. By focusing on skill development and professional education, it prepares students to meet the demands of the healthcare industry and contribute effectively to patient rehabilitation and physical therapy management.

- Skill Development: Provide intensive training in therapeutic exercises, manual therapy, electrotherapy, pain management, posture correction, and rehabilitation techniques for various conditions.
- **Professional Education**: Offer comprehensive knowledge related to the theoretical, technical, and practical aspects of physiotherapy and patient care.
- **General Education**: Include relevant general education subjects to provide a well-rounded academic foundation for healthcare professionals.
- **Employment and Entrepreneurship**: Prepare students for meaningful employment in hospitals, rehabilitation centers, sports clinics, and wellness facilities while equipping them with the skills needed to establish their own physiotherapy clinics or related ventures.
- Adaptability: Enable students to adapt to and excel in the dynamic and evolving field of physiotherapy and patient care.

GLOCAL UNIVERSITY

UGC GUIDELINES FOR CURRICULAR ASPECTS, ASSESSMENT CRITERIA AND CREDIT SYSTEM IN SKILL BASED VOCATIONAL COURSES UNDER NATIONAL SKILLS QUALIFICATION FRAMEWORK (NSQF)

As an illustration, awards could be given at each stage as per Table 1 below for cumulative credits awarded to the learners in skill based vocational courses.

Table. 1: Assessment of Skill Component under NSQF in Vocational Courses

TABLE-1

NSQF Level	Skill Component Credits	General Education Credits	Total Credits for Award	Normal Duration	Exit Points / Awards
7	108	72	180	Six Semesters	B. Voc Degree
6	72	48	120	Four semesters	Advanced Diploma
5	36	24	60	Two semesters	Diploma
4	18	12	30	One semester	Certificate

The NSQF Levels in above illustrations indicate that there should be at least one job role at the concerned NSQF Level in the curriculum to be assessed and certified for skill component. The normal training hours for skilling should be proportionate to the weightage for skill credits and an appropriate component of skill training may be imparted as on-site training at actual work place.

ASSESSMENT

The Skill component of the course will be assessed and certified by the respective Sector Skill Councils. In case, there is no Sector Skill Council for a specific trade, the assessment may be done by an allied Sector Council or the Industry partner. Wherever the university/college may deem fit, it may issue a joint certificate for the courses with the respective Sector Skill Councils.

The credits regarding skill components will be awarded in terms of NSQF level certification

which will have 60% weightage of total credits of the course in the following manner.

Certificate courses: NSQF level 4 certificate - 18 credits

Diploma courses: NSQF level 5 certificate - 36 credits

Advanced diploma courses: NSQF level 6 certificate - 72 credits

B.Voc. Degree : NSQF level 7 certificate - 108 credits

The learners will be assessed for skill components at various levels as illustrated in table. 1. The skill credits indicated above at a particular level are cumulative to the level concerned **i.e.** a candidate in advanced diploma level will be assessed for NSQF level - 6 to acquire 72 credits of skill component will be considered for overall 72 credits only. However, candidates would have been assessed for NSQF level 4 and 5 in previous semesters; these credits will not be added to skill credits after one acquires a higher level of skill competency. Similarly for B.Voc degree, the 108 credits of NSQF level 7 are inclusive of the credits awarded at NSQF level 4, 5 and 6 for the skill competence of a candidate assessed at different stages before he/she acquired the skill competence at NSQF level 7.

The **general education component** will be assessed by the concerned institutions themselves as per the norms for university / collegiate education. The following formula may be used for the credit calculation in general education component of the courses:

General Education credit refers to a unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (lecture or tutorial) or two hours of practical work/field work per week. Accordingly, one Credit would mean the equivalent of 14-15 periods of 60 minutes each or 28 - 30 hrs of workshops / labs.

- For internship / field work, the credit weightage for equivalent hours shall be 50% of that for lectures / tutorials.
- For self-learning, based on e-content or otherwise, the credit weightage for equivalent hours of study shall be 50% of that for lectures / tutorials.

The award of 'Certificate' / 'Diploma' / 'Advanced Diploma' / Degree to the successful learners in both skills and general education components of the curriculum may be done as illustrated at **Table1.**

The institutions recognized under Community Colleges *I* B.Voc Degree programme, and Deen Dayal Upadhyay KAUSHAL Kendras should adopt and integrate the guidelines and recommendations of the respective Sector Skill Councils (SSCs) for the assessment and evaluation of the vocational component, wherever available.

Common Instructions and Guideline for all semesters and Courses

1 Question Paper Pattern

(i) Where the End Term Examination is of Maximum 60 Marks

Section A: MCQ/Fill in blanks/Short answer questions (up to 25 words) 5 x2 marks

= 10 marks. All five questions are compulsory.

Section B: Analytical/Problem Solving questions (up to 100 words) 4 x 5 marks= 20 marks.

Candidate has to answer four questions out of five.

Section C: Descriptive/ Analytical/Problem solving question 2 x 15 marks = 30 marks.

Candidates have to answer two questions out of three.

(ii) Where the End Term Examination is of Maximum 30 Marks

Section A: MCQ/Fill in blanks/Short answer questions (up to 25 words) 5 xl marks

= 5 marks. All five questions are compulsory.

Section B: Analytical/Problem Solving questions (up to 100 words) 4 x 2.5 marks

= 10 marks. Candidate has to answer four questions out of five.

Section C: Descriptive/ Analytical/Problem solving question 2 x 7.5 marks= 15 marks. Candidates have to answer two questions out of three.

2. Continuous Assessment: All courses undertaken by students are evaluated during the semester using internal system of continuous assessment. The students are evaluated on class /tutorial participation, assignment work, lab work, class tests, mid-term tests, quizzes and end semester examinations, which contribute to the final grade awarded for the Course. Students will be notified at the commencement of each course about the evaluation methods being used for the courses and weightages given to the different assignments and evaluated activities. Here marks obtained in the internal assessment and end semester examination are added together and a IO-point grading system will be used to award the student with on overall letter grade for the course (Course).

Distribution of Marks

Marks
/

Total 100 Marks

Courses with Practical Components only

Internal Practical Examination and Continuous ProgressEnd-Term Examination (Practical) - 50
Total 100

Grade Distribution in Courses

To assess the performance of a student the grading & grade point system as given below in the table.

Sr.No.	% of Marks	Performance	Letter Grade	Grade
				Point
1	2: 90% &	Outstanding	0	10
	:S100%			
2	2: 80% &<90%	Excellent	A+	9
3	2: 70% &<80%	Very Good	A	8
4	2: 60% &<70%	Good	B+	7
5	2: 50% &<60%	Above Average	В	6
6	2: 45% &<50%	Average	С	5
7	2: 40% &<45%	Pass	D	4
8	<40%	Fail	F	0
9	Absent	Fail	Ab	0

- 1.A student has to obtain minimum 'D' grade in theory & practical to pass in a course/Course and to earn credit for that Course.
- 2.For award the Grade in a course/Course, marks obtained in Internal Assessment and External Assessment are added together provided the student has obtained a minimum of 40% marks in Internal Assessment as well as External Assessment separately and Combined Grade is awarded in the course/Course as per grading system given above. In case a student fails to secure a minimum of 40% marks in Internal Assessment or External Assessment or in both Internal Assessment and External Assessment, the Combined Grade awarded is Grade F (Fail).
- 3. Student has to reappear in the external examination or internal examination or both theory & practical, if he/she has been awarded 'F' grade or Absent (Ab) in any course/Course.
- 4. For non credit courses only **Satisfactory or Unsatisfactory** shall be indicated instead of letter grade and this will not be counted for computation of SGPA or CGPA.
- 5. Semester Grade Point Average (SGPA)

SGPA for a semester is calculated as under, after the student has passed in all the courses/Courses of a semester.

```
SGPA = ;_k (creditsofSubjecti x G radePointsforSubjecti) ;_k (creditsofSubjecti) Where k = No. of Courses/Courses in Semester.
```

6. Cumulative Grade Point Average (CGPA)

CGPA is calculated as under, after the student has passed in all the courses/Courses of all the semesters of the program as per prescribed scheme of studies.

```
\mathsf{CGPA} = \lozenge_{\mathsf{N}} \; (\mathsf{CreditsofSemester} \; \boldsymbol{j} \; \mathsf{x} \; \mathsf{SGPA} \; \mathsf{ofSemester} \; \boldsymbol{J}) \quad \lozenge_{\mathsf{N}} \; (\mathsf{Total} \; \mathsf{CreditsofSemester}))
```

Where N = Total Number of Semester in the Program.

7. Conversion of Grade Point Average Into Percentage of Marks

For conversion of Grade point Value of CGPA for all the semester, into percentage of marks; the CGPA is to be multiplied by 10

(% Marks= 10 X CGPA).

8. Award of Division (Course/Course to earning of total prescribed credit of all the semester):

1	7.5 :S CGPA	I Division with Distinction	
2	6 :S CGPA < 7.5	I Division	
3	5 :S CGPA < 6	II Division	
4	4.5 :S CGPA < 5	Pass1 7.5 :S CGPA I Division with Distinction 2 6 :S CGPA < 7.5 I Division 3 5 :S CGPA < 6 II Division 4 4.5 :S CGPA < 5 Pass	

Calculation of SGPA and CGPA:

Example: Table 2

Courses	Credits	Letter	Grade	Credit	Grade
		Grade	Value	Value	Points
A	3	B+	7	3x7	21
В	3	A	8	3x8	24
С	3	A+	9	3x9	27
D	2	A	8	2x8	16
TOTAL	11		TOTAL		88

In this case SGPA= Total Grade Points 88/11 = 8.0 Credits

Suppose the SGPA in two successive semesters are 7.0 and 8.0 with 26 and 24 respective course credits, then the

CGPA =
$$\frac{7x26+8x24}{26+24} = \frac{374}{50} = 7.48$$

In this case
$$SGPA = Total Grade Points$$
 88/11 = 8.0 Credits

Suppose the SGPA in two successive semesters are 7.0 and 8.0 with 26 and 24 respective course credits, then the

CGPA =
$$\frac{7x26+8x24}{26+24} = \frac{374}{50} = 7.48$$

B.Voc. in Physiotherapy Semester's

Semester I

Course Code	Title of the Course	Credits
BVPT-101	Human Anatomy-I	3
BVPT-102	Physiology & Biochemistry	3
BVPT-103	Orientation in Physiotherapy & First Aid	3
BVPT-104	English & Communication	3
BVPT-121	Practical- Human Anatomy-I	4
BVPT-122	Practical- Physiology	4
BVPT-123	Practical- Biochemistry	4
BVPT-124	Project-I	6

Semester II

Course Code	Title of the Course	Credits
DVDT 201	TI A / II	4
BVPT-201	Human Anatomy-II	4
BVPT-202	Advanced Physiology	4
BVPT-203	Fundamentals of Biomedical Physics	4
BVPT-221	Practical- Human Anatomy-II	4
BVPT-222	Practical- Advanced Physiology	4
BVPT-223	Practical- Fundamentals of Biomedical Physics	4
BVPT-224	Project –II	6

Semester III

Course Code	Title of the Course	Credits
BVPT-301	Exercise Therapy	4
BVPT-302	Introduction to Orthopedics	4
BVPT-303	Electrotherapy	4
BVPT-321	Practical- Exercise Therapy	4
BVPT-322	Practical- Introduction to Orthopedics	4
BVPT-323	Practical- Electrotherapy	4
BVPT-324	Project-III	6

Semester IV

Course Code	Title of the Course	Credits
BVPT-402	Advance Exercise Therapy	4
BVPT-403	Advance Electro Therapy	4
BVPT-404	General Medicine	4
BVPT-421	Practical- Advance Exercise Therapy	4
BVPT-422	Practical- Advance Electro Therapy	4
BVPT-423	Practical- General Medicine	4
BVPT-424	Project-IV	6

Semester V

Course Code	Title of the Course	Credits
BVPT-501	Community Medicine	4
BVPT-502	Clinical Orthopedics	4
BVPT-503	Clinical Neurology & Neurosurgery	4
BVPT-521	Practical- Physical Assessment & Manipulative Skills	4
BVPT-522	Practical- Therapeutics Exercise & Massage	4
BVPT-523	Practical- Clinical Neurology & Neurosurgery	4
BVPT-524	Project-V	6

Semester VI

Course Code	Title of the Course	Credits
BVPT-601	Physiotherapy in Cardiorespiratory & General	4
	Conditions	
BVPT-602	Physiotherapeutic Nutrition & Health	4
BVPT-603	Pediatrics Nutrition and Health	4
BVPT-621	Practical- Physiotherapy in Cardiorespiratory &	4
	General Conditions	
BVPT-622	Practical- Physiotherapeutic Nutrition & Health	4
BVPT-623	Practical- Pediatrics Nutrition and Health	4
BVPT-624	Project-VI	6

Semester I

BVPT-101: Human Anatomy-I

Unit 1: Introduction to Human Anatomy

Basics of Human Anatomy

- Definition and importance of anatomy in physiotherapy
- Anatomical terminology: planes, directions, and positions
- Regions of Body, Cavities and systems.
- o General Embryology.

Overview of Human Body Systems

- o Major systems: musculoskeletal, cardiovascular, respiratory, etc.
- o Integration of systems and their functional significance

Unit 2: Skeletal System

Bone Structure and Classification

- Types of bones (long, short, flat, irregular)
- o Bone structure: compact and spongy bone

Axial Skeleton

- Skull: bones and landmarks
- Vertebral column: cervical, thoracic, lumbar, sacral, and coccygeal regions

Appendicular Skeleton

- o Shoulder girdle: clavicle, scapula
- o Upper limb: humerus, radius, ulna, carpal bones, metacarpals, phalanges
- o Pelvic girdle: pelvis, sacrum
- o Lower limb: femur, patella, tibia, fibula, tarsals, metatarsals, phalanges

Unit 3: Muscular System

• Muscle Tissue Types and Function

- o Skeletal, cardiac, and smooth muscle tissues
- Muscle contraction and movement
- Muscle classification, structure and functional aspect.

Major Muscle Groups and Functions

- o Muscles of the head and neck
- Muscles of the trunk (abdominal muscles, back muscles)
- o Muscles of the upper limb
- o Muscles of the lower limb

Unit 4: Joints and Ligaments

• Joint Classification and Structure

- o Types of joints: fibrous, cartilaginous, synovial
- o Synovial joint structures: ligaments, tendons, bursae

Major Joints and Movements

- Shoulder joint, elbow joint, wrist joint
- o Hip joint, knee joint, ankle joint

Common Joint Pathologies

Joint injuries and disorders (e.g., dislocations, arthritis)

Unit 5: Cardiovascular System

• Heart Anatomy and Function

- o Structure of the heart: chambers, valves, major vessels
- Cardiac cycle and blood flow

• Blood Vessels and Circulation

- Types of blood vessels: arteries, veins, capillaries
- o Systemic and pulmonary circulation

Common Cardiovascular Disorders

o Hypertension, heart disease, vascular disorders

Unit 6: Respiratory System

Anatomy of the Respiratory Tract

- Upper and lower respiratory tract structures
- Lung anatomy and function

• Mechanics of Breathing

- o Respiratory muscles and their role
- o Gas exchange and respiratory physiology

Common Respiratory Disorders

o Asthma, chronic obstructive pulmonary disease (COPD), pneumonia

Unit 7: Integration and Clinical Applications

Clinical Anatomy in Physiotherapy

- o Application of anatomical knowledge in physiotherapy practice
- Case studies and clinical scenarios

• Assessment Techniques

- o Physical examination techniques
- Anatomical landmarks and their relevance in physiotherapy assessment

Practical Anatomy Labs

- o Dissection and anatomical modeling
- o Use of anatomical charts and software for learning

BVPT-102: Physiology & Biochemistry

Unit 1: Introduction to Physiology and Biochemistry

Basics of Physiology

- Definition and scope of physiology in physiotherapy
- o Homeostasis and physiological regulation

• Introduction to Biochemistry

- o Role of biochemistry in understanding physiological processes
- o Basic chemical principles relevant to physiology

Unit 2: Cellular Physiology

• Cell Structure and Function

- o Cell organelles: nucleus, mitochondria, endoplasmic reticulum, etc.
- o Cellular processes: metabolism, cell division

Membrane Transport Mechanisms

o Passive transport: diffusion, osmosis

- o Active transport: pumps, endocytosis, exocytosis
- Cell Communication and Signaling
 - Hormonal signaling
 - Receptor types and their functions

Unit 3: Musculoskeletal Physiology

• Muscle Physiology

- Muscle contraction mechanisms (sliding filament theory)
- Types of muscle fibers and their functions

Skeletal System Physiology

- o Bone formation and remodeling
- Joints and their types: structure and function

• Muscular Adaptations to Exercise

- Muscle hypertrophy and endurance
- o Physiological responses to resistance and aerobic exercise

Unit 4: Cardiovascular Physiology

Heart Anatomy and Function

- o Cardiac cycle and cardiac output
- o Electrocardiogram (ECG) and its interpretation

• Blood Vessels and Circulation

- o Arteries, veins, and capillaries: structure and function
- o Blood pressure regulation and its significance

• Hemodynamics and Cardiovascular Disorders

- Blood flow dynamics
- o Common cardiovascular disorders and their physiological impact

Unit 5: Respiratory Physiology

Anatomy of the Respiratory System

- o Respiratory tract and lung structure
- Mechanics of breathing

Gas Exchange and Transport

- Oxygen and carbon dioxide transport
- Role of hemoglobin in gas exchange

• Respiratory Regulation

- o Control of breathing: neural and chemical regulation
- o Respiratory disorders and their physiological basis

Unit 6: Biochemical Principles and Metabolism

• Basic Biochemical Concepts

- Structure and function of biomolecules: proteins, carbohydrates, lipids, nucleic acids
- Enzyme structure and function

• Metabolic Pathways

- o Carbohydrate metabolism: glycolysis, gluconeogenesis
- o Lipid metabolism: beta-oxidation, lipogenesis
- o Protein metabolism: amino acid metabolism, urea cycle

• Biochemical Aspects of Nutrition

- o Nutrients and their biochemical roles
- Metabolic changes in response to diet and exercise

Unit 7: Clinical Applications and Case Studies

- Integrative Physiology and Biochemistry
 - Application of physiological and biochemical concepts in clinical practice
 - Case studies and clinical scenarios relevant to physiotherapy
- Assessment and Diagnostic Techniques
 - Laboratory techniques for physiological and biochemical measurements
 - o Interpretation of diagnostic results in the context of physiotherapy
- Practical Labs and Exercises
 - o Biochemical assays and physiological measurements
 - o Hands-on activities related to exercise physiology and clinical biochemistry

BVPT-103: Orientation in Physiotherapy & First Aid

Unit 1: Introduction to Physiotherapy

- History and Evolution of Physiotherapy
 - o Development of the field
 - o Key milestones and influential figures
- Scope of Physiotherapy
 - o Areas of specialization: musculoskeletal, neurological, cardiopulmonary, etc.
 - o Role of physiotherapists in healthcare
- Ethical and Legal Aspects
 - Professional ethics in physiotherapy
 - o Legal responsibilities and patient rights

Unit 2: Basic Concepts in Physiotherapy

- Understanding Movement and Function
 - Kinesiology: study of movement
 - o Biomechanics: principles of force and motion in the human body
- Assessment Techniques
 - Physical examination procedures
 - o Use of goniometers, dynamometers, and other assessment tools
- Treatment Modalities
 - o Overview of therapeutic exercises, electrotherapy, and manual therapy

Unit 3: Introduction to First Aid

- Principles of First Aid
 - o Aims and objectives of first aid
 - o Legal considerations in providing first aid
- First Aid Kit Essentials
 - Components and their uses
 - o Maintenance and organization of a first aid kit
- Role of a First Aider
 - Responsibilities and limitations
 - Communication with emergency services

Unit 4: Management of Common Injuries

Soft Tissue Injuries

- Sprains, strains, and contusions
- o Immediate care and rehabilitation

• Fractures and Dislocations

- Types of fractures and dislocations
- o First aid treatment and immobilization techniques

Burns and Scalds

- Classification and severity of burns
- o First aid treatment for thermal, chemical, and electrical burns

Unit 5: Cardiopulmonary Resuscitation (CPR) and Emergency Response

• Understanding CPR

- Basic life support (BLS) techniques
- o Adult, child, and infant CPR protocols

Automated External Defibrillator (AED)

- o Principles of defibrillation
- o Safe use of AEDs in emergencies

• Emergency Response Planning

- o Developing and implementing an emergency action plan
- o Triage and prioritization in emergency situations

Unit 6: Handling Medical Emergencies

• Respiratory Emergencies

- Management of choking, asthma, and anaphylaxis
- Use of inhalers and epinephrine auto-injectors

• Cardiovascular Emergencies

- o Recognition and management of heart attacks and strokes
- First aid for shock and fainting

Poisoning and Overdose

- o Identification and management of different types of poisoning
- o First aid interventions for drug overdoses

Unit 7: Environmental and Situational Emergencies

• Heat and Cold-Related Illnesses

- o Recognition and treatment of heat exhaustion, heat stroke, and hypothermia
- o First aid for frostbite and sunburn

• Drowning and Water-Related Incidents

- o Techniques for water rescue and resuscitation
- o First aid for near-drowning victims

Disaster Preparedness

- First aid in disaster scenarios (earthquakes, floods, etc.)
- o Psychological first aid and support in crisis situations

BVPT-104: English & Communication

Unit 1: Understanding the Communication Process

- Communication Process: Definition, elements, and models of communication.
- Barriers to Effective Communication: Identifying and overcoming communication barriers.
- Types of Communication:
 - o Verbal Communication: Oral and written communication.
 - Non-Verbal Communication: Body language, facial expressions, and gestures.
 - Visual Communication: Use of images, symbols, and visual aids.
- **Effective Communication Strategies:** Developing clarity, coherence, and relevance in communication.

Unit 2: Fundamentals of English Communication

- **Communicating in English:** Basics of English grammar, sentence structure, and common phrases.
- **Importance of Listening:** Active listening techniques and their role in effective communication.
- Organs of Speech: Understanding speech production and articulation.
- Vowels & Vowel Sounds Practice: Pronunciation and differentiation of vowel sounds.
- Consonants & Consonant Sounds Practice: Practice in articulating consonant sounds.

Unit 3: Developing Pronunciation and Vocabulary

- **Pronunciation:** Techniques for clear and accurate pronunciation.
- Vocabulary Building: Strategies for expanding vocabulary and using words contextually.
- Common Pronunciation Challenges: Identifying and overcoming difficulties in English pronunciation.
- Speaking as a Language Skill: Enhancing fluency and confidence in spoken English.

Unit 4: Business Communication

- Introduction to Business Communication: Importance, types, and channels.
- Written Communication: Crafting effective emails, reports, and business letters.
- Oral Communication in Business: Effective meetings, teleconferencing, and negotiation skills
- **Cross-Cultural Communication:** Understanding and adapting to cultural differences in communication.

Unit 5: Public Speaking and Presentation Skills

- **Public Speaking:** Techniques for delivering impactful speeches.
- Presentation Skills: Planning, organizing, and delivering presentations.
- Use of Visual Aids: Enhancing presentations with appropriate visual aids.
- Overcoming Stage Fright: Strategies for building confidence in public speaking.
- Practice Sessions: Practical exercises and feedback on public speaking and presentations.

BVPT-121: Practical- Human Anatomy-I

Unit 1: Anatomical Terminology and Basic Concepts

Activity 1: Anatomical Terminology Quiz

 Conduct a practical quiz on anatomical terminology, including terms related to body positions, planes, and directions. Students will match terms with their definitions and identify anatomical positions on diagrams.

Activity 2: Body Orientation and Movement

 Demonstrate and practice body orientations and movements using anatomical models or virtual anatomy software. Students will perform and describe movements such as flexion, extension, abduction, and adduction.

Unit 2: Skeletal System

• Activity 1: Bone Identification and Classification

 Identify and classify bones of the human skeleton using skeletal models or diagrams. Students will label major bones and bone groups (e.g., axial vs. appendicular) and discuss their functions.

Activity 2: Joint and Bone Structure Analysis

 Examine the structure of major joints (e.g., knee, shoulder, hip) and their associated bones. Students will perform hands-on exercises to understand joint types (e.g., ball-and-socket, hinge) and their range of motion.

Unit 3: Muscular System

Activity 1: Muscle Identification and Function

 Identify and label major muscles of the human body using anatomical models or diagrams. Students will demonstrate muscle locations, actions, and functions through palpation and practical exercises.

Activity 2: Muscle Testing and Evaluation

Perform basic muscle strength tests for various muscle groups. Students will
evaluate muscle strength using manual muscle testing techniques and record
findings for practical analysis.

Unit 4: Circulatory System

• Activity 1: Heart Anatomy and Function

Examine the anatomical structure of the heart using models or diagrams.
 Students will identify heart chambers, valves, and major blood vessels and describe the path of blood flow through the heart.

• Activity 2: Pulse and Blood Pressure Measurement

Practice measuring pulse and blood pressure using sphygmomanometers and stethoscopes. Students will learn proper techniques for measuring and recording vital signs and analyze variations.

Unit 5: Respiratory System

Activity 1: Lung Anatomy and Function

Identify the major structures of the respiratory system (e.g., trachea, bronchi, alveoli) using models or diagrams. Students will discuss the function of each structure in the process of respiration.

Activity 2: Respiratory Rate Measurement

o Measure and record respiratory rates using manual techniques. Students will

practice assessing respiratory patterns and understanding their significance in health and disease.

Unit 6: Nervous System

Activity 1: Brain and Spinal Cord Anatomy

Study the anatomy of the brain and spinal cord using models or diagrams.
 Students will identify major brain regions, spinal cord segments, and their functions.

Activity 2: Reflex Testing

 Perform basic reflex tests (e.g., knee-jerk, ankle-jerk) to assess the function of the nervous system. Students will understand the clinical significance of reflex responses and document their findings.

BVPT-122: Practical- Physiology

Unit 1: Cellular Physiology

Activity 1: Microscopic Examination of Cells

 Prepare and examine different types of cell samples under a microscope. Students will identify cell structures such as the nucleus, cytoplasm, and cell membrane, and understand their functions.

• Activity 2: Cell Membrane Transport

 Conduct experiments to observe osmosis and diffusion through cell membranes using dialysis tubing or similar setups. Students will measure and analyze the effects of different solutions on cell membrane permeability.

Unit 2: Cardiovascular Physiology

• Activity 1: Heart Rate and Blood Pressure Measurement

 Measure heart rate and blood pressure using sphygmomanometers and stethoscopes. Students will practice assessing vital signs, recording data, and understanding normal vs. abnormal values.

Activity 2: Electrocardiogram (ECG) Recording

 Perform ECG recordings to analyze heart rhythms and identify common arrhythmias. Students will learn to place electrodes and interpret basic ECG patterns.

Unit 3: Respiratory Physiology

Activity 1: Spirometry

 Conduct spirometry tests to measure lung volumes and capacities. Students will learn to operate spirometers and interpret results related to pulmonary function (e.g., tidal volume, vital capacity).

Activity 2: Respiratory Rate and Rhythm Analysis

 Measure and record respiratory rate and rhythm. Students will perform observations on breathing patterns and analyze changes in response to physical activity or controlled breathing exercises.

Unit 4: Muscular Physiology

• Activity 1: Muscle Contraction Experiments

Study muscle contraction by observing muscle responses to electrical stimulation.
 Students will use electromyography (EMG) equipment to analyze muscle activity and fatigue.

• Activity 2: Range of Motion (ROM) Assessment

Measure and record the range of motion for different joints using goniometers.
 Students will practice assessing flexibility and joint mobility, and understand their significance in physical therapy.

Unit 5: Nervous System Physiology

Activity 1: Reflex Arc Testing

 Perform tests to assess reflex arcs (e.g., patellar reflex, Achilles reflex). Students will evaluate response times and reflexes to understand the nervous system's function and integrity.

• Activity 2: Sensory and Motor Function Assessment

 Test sensory and motor functions using simple tests like two-point discrimination, proprioception, and grip strength. Students will assess and record sensory perception and motor control.

Unit 6: Endocrine Physiology

Activity 1: Hormone Secretion and Effects

 Study the effects of hormones on various physiological functions by simulating hormonal changes. Students will learn to use physiological models to understand the role of key hormones in metabolism, growth, and homeostasis.

Activity 2: Blood Glucose and Insulin Testing

 Measure blood glucose levels and simulate insulin responses using glucose tolerance tests. Students will understand the physiological basis of glucose regulation and its implications for diseases like diabetes.

BVPT-123: Practical- Biochemistry

Unit 1: Introduction to Biochemical Techniques

Activity 1: Preparation of Buffers and Solutions

 Prepare various buffer solutions (e.g., phosphate buffer, Tris buffer) and understand their role in maintaining pH stability in biochemical experiments.
 Students will practice accurately measuring and mixing chemicals.

Activity 2: Use of Spectrophotometer

 Learn to use a spectrophotometer for measuring the absorbance of solutions at specific wavelengths. Students will calibrate the instrument and perform absorbance measurements on standard solutions.

Unit 2: Carbohydrates

Activity 1: Qualitative Tests for Carbohydrates

 Perform qualitative tests to detect the presence of carbohydrates (e.g., Benedict's test for reducing sugars, Iodine test for starch). Students will interpret color changes and compare with known standards.

Activity 2: Quantitative Estimation of Glucose

 Use colorimetric methods to estimate glucose concentration in solution. Students will prepare a glucose standard curve and calculate the glucose concentration in unknown samples.

Unit 3: Proteins

• Activity 1: Protein Identification Tests

 Conduct tests to identify proteins in samples using reagents like Biuret reagent and Ninhydrin. Students will observe color changes and perform qualitative analysis.

• Activity 2: Protein Quantification

Quantify protein concentration using the Bradford assay or Lowry method.
 Students will prepare protein standards and calculate protein concentration in unknown samples.

Unit 4: Lipids

• Activity 1: Lipid Extraction

Extract lipids from biological samples using solvents like ethanol or chloroform.
 Students will separate and identify lipid fractions using thin-layer chromatography (TLC).

Activity 2: Saponification Test

 Perform the saponification test to identify the presence of fats and oils in samples. Students will understand the chemical reactions involved and analyze the results.

Unit 5: Enzymes

• Activity 1: Enzyme Activity Measurement

Measure enzyme activity using substrates and observe the effects of variables like pH and temperature on enzyme activity. Students will use assays like enzymelinked immunosorbent assays (ELISA) or spectrophotometric assays.

Activity 2: Determination of Enzyme Kinetics

 Conduct experiments to determine enzyme kinetics parameters such as Vmax and Km using Michaelis-Menten kinetics. Students will plot and analyze enzyme activity curves.

Unit 6: Nucleic Acids

Activity 1: DNA Extraction and Analysis

Extract DNA from biological samples and analyze it using gel electrophoresis.
 Students will visualize DNA bands and interpret the results.

Activity 2: RNA Isolation and Quantification

 Isolate RNA from cells or tissues and quantify it using spectrophotometric methods. Students will understand the principles of RNA extraction and measure RNA concentration.

Project 1: Posture and Body Mechanics in Daily Life

 Objective: Analyze the importance of correct posture and body mechanics in preventing musculoskeletal disorders.

Activities:

- 1. Conduct a posture analysis for peers or volunteers in different daily activities (e.g., sitting, standing, lifting).
- 2. Create an educational guide or presentation on how to maintain good posture during common activities.

Project 2: Exercise Prescription for Beginners

• **Objective:** Develop a basic exercise regimen for improving flexibility, strength, and endurance in sedentary individuals.

• Activities:

- 1. Create a 4-week exercise plan, including stretching, strengthening, and cardiovascular exercises.
- 2. Track the results and improvements in physical parameters (e.g., flexibility, endurance) in a peer or volunteer following the plan.

Project 3: Understanding the Effects of Heat and Cold Therapy

 Objective: Explore the therapeutic effects of heat and cold applications in injury management.

Activities:

- 1. Compare and contrast the benefits of hot and cold therapy on different types of injuries (e.g., acute vs. chronic).
- 2. Design a treatment protocol using heat or cold therapy for a hypothetical patient recovering from a soft tissue injury.

Project 4: Role of Nutrition in Muscle Recovery

- Objective: Investigate how nutrition influences muscle recovery after physical activity.
- Activities:
 - 1. Research the role of specific nutrients (e.g., protein, carbohydrates) in muscle repair and recovery.
 - 2. Develop a post-exercise nutrition plan for athletes or active individuals, and explain how it supports recovery.

Project 5: Basic Physiotherapy Techniques for Back Pain Management

• **Objective:** Understand and apply basic physiotherapy techniques for the management of back pain.

Activities:

- 1. Design a set of therapeutic exercises (e.g., stretching, strengthening) specifically for individuals with lower back pain.
- 2. Develop educational material for patients on lifestyle modifications and exercises to prevent or reduce back pain.

Project 6: Cardiovascular Fitness and Physiotherapy

Objective: Explore the role of physiotherapy in improving cardiovascular fitness.

Activities:

- 1. Design an exercise program aimed at enhancing cardiovascular endurance for a sedentary individual.
- 2. Monitor and document the physiological responses (e.g., heart rate, blood pressure) during and after the exercise sessions.

Project 7: The Role of Physiotherapy in Geriatric Health

• **Objective:** Study the impact of physiotherapy on mobility and quality of life in elderly individuals.

• Activities:

- 1. Create an exercise plan that focuses on improving balance, strength, and flexibility in older adults.
- 2. Develop an educational pamphlet for elderly patients and caregivers on fall prevention and maintaining mobility through exercise.

Semester II

BVPT-201: Human Anatomy-II

Unit 1: Musculoskeletal System - Upper Limb

Bones of the Upper Limb

- Detailed study of the clavicle, scapula, humerus, radius, and ulna
- o Identification of key landmarks and features

• Muscles of the Upper Limb

- o Origin, insertion, and actions of the muscles of the shoulder, arm, and forearm
- o Study of the rotator cuff, biceps, triceps, and other major muscles

• Joints and Movements

- o Structure and function of the shoulder, elbow, and wrist joints
- o Range of motion and movements associated with each joint

Unit 2: Musculoskeletal System - Lower Limb

Bones of the Lower Limb

- o Detailed study of the pelvis, femur, tibia, fibula, and patella
- o Identification of key landmarks and features

• Muscles of the Lower Limb

- o Origin, insertion, and actions of the muscles of the hip, thigh, leg, and foot
- o Study of the gluteal muscles, quadriceps, hamstrings, and calf muscles

• Joints and Movements

- Structure and function of the hip, knee, and ankle joints
- Range of motion and movements associated with each joint

Unit 3: Nervous System - Central Nervous System

Overview of the Central Nervous System (CNS)

- o Anatomy and functions of the brain and spinal cord
- Major divisions: cerebrum, cerebellum, brainstem, and spinal cord segments

• Functional Areas of the Brain

- o Detailed study of motor, sensory, and association areas
- Functions of the frontal, parietal, temporal, and occipital lobes

Spinal Cord Anatomy

- o Structure of the spinal cord, gray and white matter, and spinal nerves
- o Reflex arcs and their significance in motor control

Unit 4: Nervous System - Peripheral and Autonomic Nervous Systems

• Peripheral Nervous System (PNS)

- Anatomy and functions of cranial and spinal nerves
- o Detailed study of major nerve plexuses: brachial, lumbar, and sacral

Autonomic Nervous System (ANS)

- o Overview of the sympathetic and parasympathetic divisions
- Functions and control of involuntary activities: heart rate, digestion, and respiration

Neurotransmission and Synapses

- o Mechanisms of nerve impulse transmission
- o Role of neurotransmitters in synaptic communication

Unit 5: Cardiovascular System

Anatomy of the Heart

- o Structure and layers of the heart: myocardium, endocardium, and epicardium
- o Study of the chambers, valves, and major blood vessels associated with the heart

• Blood Vessels and Circulation

- o Anatomy of arteries, veins, and capillaries
- o Detailed study of systemic and pulmonary circulation

Lymphatic System

- o Structure and functions of lymph nodes, lymph vessels, and spleen
- o Role of the lymphatic system in immunity and fluid balance

Unit 6: Respiratory System

Anatomy of the Upper Respiratory Tract

- Study of the nasal cavity, pharynx, larynx, and trachea
- o Functions of the upper respiratory structures in air filtration and sound production

Anatomy of the Lower Respiratory Tract

- o Study of the bronchi, bronchioles, alveoli, and lungs
- o Mechanics of breathing: inspiration and expiration

Pulmonary Circulation and Gas Exchange

- o Structure of the respiratory membrane and alveolar-capillary interface
- o Processes of oxygen and carbon dioxide exchange

Unit 7: Digestive System

Anatomy of the Alimentary Canal

- Detailed study of the mouth, esophagus, stomach, small intestine, and large intestine
- Functions of each segment in digestion and absorption of nutrients

Accessory Organs of Digestion

- o Anatomy and functions of the liver, gallbladder, pancreas, and salivary glands
- o Role of digestive enzymes and bile in food breakdown

• Nutrient Absorption and Metabolism

- o Mechanisms of nutrient absorption in the small intestine
- Overview of metabolism and energy production

Unit 8: Urinary and Reproductive Systems

Anatomy of the Urinary System

- o Structure and functions of the kidneys, ureters, bladder, and urethra
- o Role of the kidneys in filtration, reabsorption, and urine formation

Male Reproductive System

- o Anatomy of the testes, vas deferens, seminal vesicles, and penis
- o Functions of male reproductive organs in sperm production and ejaculation

Female Reproductive System

- o Anatomy of the ovaries, fallopian tubes, uterus, and vagina
- o Functions of female reproductive organs in ovulation, fertilization, and childbirth

BVPT-202: Advanced Physiology

• Advanced Neural Communication

- Synaptic plasticity and neural pathways
- Mechanisms of neural integration and processing

• Higher Brain Functions

- o Cognitive functions: memory, learning, and language
- o Role of the limbic system in emotions and behavior

Pain Physiology

- o Types of pain: nociceptive, neuropathic, and referred pain
- o Mechanisms of pain perception and modulation

Unit 2: Cardiovascular Physiology

Advanced Hemodynamics

- o Blood flow dynamics in microcirculation
- Vascular compliance and its clinical implications

Cardiac Output and Its Regulation

- o Factors affecting cardiac output: preload, afterload, contractility
- o Regulation of cardiac output during exercise and stress

• Pathophysiology of Cardiovascular Disorders

- o Mechanisms underlying hypertension, heart failure, and atherosclerosis
- o Physiological basis of therapeutic interventions

Unit 3: Respiratory Physiology

Pulmonary Gas Exchange

- o Ventilation-perfusion matching and its clinical relevance
- o Diffusion capacity of the lungs and factors affecting it

Control of Breathing

- o Central and peripheral chemoreceptors in respiratory regulation
- Adaptation of the respiratory system during exercise and high altitude

Respiratory Pathophysiology

- o Mechanisms underlying obstructive and restrictive lung diseases
- o Physiological principles of mechanical ventilation

Unit 4: Renal Physiology

• Glomerular Filtration Dynamics

- Factors affecting glomerular filtration rate (GFR)
- o Mechanisms of autoregulation in renal blood flow

• Tubular Functions

- Advanced concepts in reabsorption and secretion in the nephron
- o Role of the kidney in calcium and phosphate homeostasis

Pathophysiology of Renal Disorders

- Mechanisms of chronic kidney disease and acute renal failure
- o Physiological basis of dialysis and kidney transplantation

Unit 5: Gastrointestinal Physiology

Advanced Digestive Functions

- Regulation of gastric secretion and motility
- Hormonal control of the digestive process

Nutrient Absorption Mechanisms

- Molecular mechanisms of nutrient absorption and transport
- Role of gut microbiota in digestion and immunity

Gastrointestinal Pathophysiology

o Mechanisms underlying inflammatory bowel disease and peptic ulcers

Physiological basis of gastrointestinal diagnostics and treatment

Unit 6: Endocrine Physiology

• Hormonal Interactions and Feedback

- o Complex interactions between different endocrine glands
- Mechanisms of hormone action at the cellular level

Metabolic Regulation

- o Endocrine control of metabolism: insulin, glucagon, and thyroid hormones
- o Hormonal adaptations to stress and starvation

• Endocrine Pathophysiology

- Mechanisms of endocrine disorders: diabetes, hypothyroidism, and Cushing's syndrome
- o Physiological principles of endocrine therapies

Unit 7: Muscle Physiology

Muscle Contraction Mechanisms

- Molecular basis of muscle contraction and relaxation
- Role of calcium in muscle function and fatigue

• Adaptations to Exercise

- o Physiological changes in muscle with endurance and strength training
- Mechanisms of muscle hypertrophy and atrophy

Pathophysiology of Muscle Disorders

- o Mechanisms underlying muscle dystrophies and myopathies
- o Physiological basis of therapeutic interventions in muscle disorders

Unit 8: Immune System Physiology

Advanced Concepts in Immunity

- o Mechanisms of innate and adaptive immune responses
- o Role of cytokines and immune signaling pathways

Immunopathology

- o Mechanisms of autoimmune diseases and hypersensitivity reactions
- o Physiological basis of immunosuppressive therapies

• Integration of Immune System with Other Systems

- o Interaction between the immune system and the nervous and endocrine systems
- o Role of the immune system in tissue repair and regeneration

BVPT-203: Fundamentals of Biomedical Physics

Unit 1: Introduction to Biomedical Physics

• Basic Concepts of Physics in Medicine

- o Fundamental physical principles relevant to biology and medicine
- o Role of physics in the development of medical technologies

Units and Measurements in Biomedical Physics

- o SI units and their application in biomedical measurements
- o Accuracy, precision, and errors in medical instrumentation

Biomechanics

o Basic principles of mechanics as applied to the human body

o Concepts of force, torque, and equilibrium in the musculoskeletal system

Unit 2: Thermodynamics in Biological Systems

• Basic Thermodynamic Principles

- Laws of thermodynamics and their relevance to biological processes
- o Concepts of energy, heat, and work in the human body

• Heat Transfer in Biological Systems

- o Mechanisms of heat transfer: conduction, convection, and radiation
- o Thermoregulation in the human body and its physiological significance

Applications in Medical Thermography

- o Principles of thermography and its use in medical diagnostics
- o Interpretation of thermographic images in clinical settings

Unit 3: Electromagnetic Radiation in Medicine

Basics of Electromagnetic Radiation

- o Nature of electromagnetic waves and their interaction with matter
- o Spectrum of electromagnetic radiation and its medical applications

Medical Imaging Techniques

- o Principles of X-rays, CT scans, and MRI
- o Safety considerations in the use of radiation in medical diagnostics

• Laser Physics in Medicine

- o Principles of laser operation and its applications in surgery and therapy
- Biological effects of laser radiation and safety protocols

Unit 4: Sound and Ultrasound in Medicine

Principles of Sound

- o Properties of sound waves: frequency, wavelength, and amplitude
- o Human hearing and the physics of the auditory system

• Ultrasound Physics

- o Generation and properties of ultrasound waves
- o Interaction of ultrasound with tissues: reflection, refraction, and absorption

Applications of Ultrasound

- o Diagnostic ultrasound imaging techniques
- Therapeutic uses of ultrasound in physiotherapy

Unit 5: Bioelectricity and Electromagnetism

Basics of Bioelectricity

- o Electric properties of cells and tissues
- o Origin and measurement of bioelectric potentials (e.g., ECG, EEG, EMG)

Electromagnetic Fields in Medicine

- o Interaction of electromagnetic fields with biological tissues
- o Medical applications of electromagnetic fields in diagnostics and therapy

• Safety Considerations

- o Biological effects of exposure to electric and magnetic fields
- Safety standards and guidelines in the use of bioelectromagnetic devices

Unit 6: Radiation Physics and Radiobiology

Radiation Fundamentals

- o Types of ionizing radiation and their properties
- o Mechanisms of radiation interaction with biological tissues

Radiobiology

- o Biological effects of ionizing radiation on cells and tissues
- o Radiation dose, exposure, and safety measures in clinical practice

• Radiation Protection in Medicine

- o Principles of radiation protection for patients and healthcare workers
- o Use of shielding, dosimetry, and monitoring in medical settings

Unit 7: Applications of Physics in Physiotherapy

Biophysics of Movement

- Physics of human motion and its application in physical therapy
- o Analysis of gait, posture, and joint mechanics using physical principles

• Therapeutic Modalities in Physiotherapy

- Physical principles underlying therapeutic modalities: ultrasound, heat therapy, and electrical stimulation
- o Mechanisms of action and clinical applications in physiotherapy

Innovations in Biomedical Physics

- Emerging technologies in biomedical physics and their potential applications in physiotherapy
- o Integration of biomedical physics with other medical disciplines

BVPT-221: Practical- Human Anatomy-II

Unit 1: Musculoskeletal System

• Activity 1: Identification of Major Bones and Muscles

o Identify and label major bones and muscles of the human body using anatomical models or diagrams, focusing on their roles in movement and support.

• Activity 2: Joint Movements and Range of Motion

 Perform exercises to understand different joint movements (e.g., flexion, extension) and measure the range of motion for various joints.

Unit 2: Cardiovascular System

• Activity 1: Heart Dissection and Structure Identification

 Dissect a mammalian heart to identify key structures such as atria, ventricles, valves, and major blood vessels.

• Activity 2: Blood Pressure and Pulse Rate Measurement

 Practice measuring blood pressure and pulse rate using standard tools and analyze how physical activity affects cardiovascular function.

Unit 3: Respiratory System

• Activity 1: Lung Dissection and Structure Identification

 Conduct a guided dissection of mammalian lungs to explore the anatomy of the respiratory system, including the trachea, bronchi, and alveoli.

Activity 2: Spirometry Testing

 Use spirometry to measure lung function, including tidal volume and vital capacity, and analyze respiratory health.

Unit 4: Nervous System

• Activity 1: Brain Structure Identification

 Identify and label major structures of the brain using models or diagrams, focusing on areas critical for sensory and motor functions.

Activity 2: Reflex and Cranial Nerve Testing

 Perform reflex tests (e.g., patellar reflex) and cranial nerve function tests to understand basic neural pathways and sensory responses.

Unit 5: Digestive System

Activity 1: Dissection of the Digestive Tract

 Dissect a mammalian digestive tract to identify key organs such as the stomach, intestines, liver, and pancreas.

Activity 2: Analysis of Digestive Enzymes

 Test the activity of digestive enzymes in breaking down nutrients, simulating the process of digestion.

Unit 6: Urinary System

Activity 1: Kidney Dissection and Structure Identification

 Dissect a mammalian kidney to explore its internal structure, including the cortex, medulla, and nephrons.

Activity 2: Urine Analysis

 Perform basic urine analysis tests to assess kidney function, including testing for pH, specific gravity, and the presence of glucose or protein.

BVPT-222: Practical- Advanced Physiology

Unit 1: Renal Physiology

Activity 1: Glomerular Filtration Rate (GFR) Simulation

 Simulate and analyze the process of glomerular filtration in the kidneys, including factors that affect GFR and its role in maintaining body fluid balance.

Activity 2: Urine Composition Analysis

 Perform a detailed analysis of urine samples to measure and interpret the presence of various substances, such as electrolytes, proteins, and waste products, in relation to kidney function.

Unit 2: Digestive Physiology

Activity 1: Enzyme Activity in Digestion

 Test and measure the activity of digestive enzymes, such as amylase and pepsin, under different conditions to understand their role in breaking down food.

Activity 2: Gastrointestinal Motility Experiment

 Conduct experiments to observe and analyze the movement of the gastrointestinal tract, focusing on peristalsis and its regulation during digestion.

Unit 3: Reproductive Physiology

Activity 1: Hormonal Regulation of Reproductive Cycles

 Study and simulate the hormonal regulation of reproductive cycles in both males and females, focusing on the role of key hormones such as estrogen, testosterone, and progesterone.

Activity 2: Sperm and Egg Viability Testing

 Conduct tests to assess the viability and health of sperm and egg cells under various conditions, including temperature and pH variations.

Unit 4: Immune System Physiology

Activity 1: White Blood Cell Function Testing

 Perform tests to evaluate the function of white blood cells, including phagocytosis and the immune response to pathogens.

Activity 2: Antibody-Antigen Reaction Simulation

 Simulate and analyze the reaction between antibodies and antigens to understand immune responses, including the principles of vaccination and immune memory.

Unit 5: Integumentary System Physiology

Activity 1: Skin Response to Environmental Stimuli

 Monitor and measure the skin's physiological response to various environmental stimuli, such as heat, cold, and UV light, focusing on protective mechanisms.

• Activity 2: Wound Healing Process Analysis

 Study and document the stages of wound healing in the skin, including inflammation, tissue repair, and scar formation.

Unit 6: Sensory Physiology

Activity 1: Sensory Receptor Testing

 Test and measure the response of various sensory receptors (e.g., touch, taste, smell) to different stimuli, analyzing their role in perception and environmental interaction.

Activity 2: Visual and Auditory Acuity Testing

 Perform tests to assess visual and auditory acuity, including measurements of vision sharpness, depth perception, and hearing sensitivity under different conditions.

BVPT-223: Practical- Fundamentals of Biomedical Physics

Unit 1: Biomechanics

Activity 1: Analysis of Human Body Motion

 Use motion analysis software or tools to study and measure human body movements, focusing on biomechanics principles such as force, velocity, and acceleration during physical activities.

Activity 2: Force and Torque Measurement in Joints

 Measure and analyze the forces and torques exerted on various joints (e.g., knee, elbow) during different physical tasks, using force sensors and mathematical calculations.

Unit 2: Fluid Mechanics in the Human Body

Activity 1: Blood Flow Simulation in Arteries

 Simulate blood flow through arteries using fluid dynamics software, and analyze how factors like vessel diameter and blood viscosity affect flow rates and pressure.

• Activity 2: Respiratory Flow Dynamics

 Measure and analyze the flow of air through the respiratory system during inhalation and exhalation, studying the effects of airway resistance and lung compliance on breathing.

Unit 3: Thermodynamics in Human Physiology

Activity 1: Body Temperature Regulation

 Conduct experiments to measure body temperature under different environmental conditions, and analyze how the body regulates temperature through mechanisms like sweating and shivering.

Activity 2: Heat Transfer in the Human Body

 Study and simulate the different modes of heat transfer (conduction, convection, radiation) within the human body, and analyze their roles in maintaining homeostasis.

Unit 4: Electrophysiology

Activity 1: Measurement of Bioelectric Signals (ECG, EMG)

 Record and analyze bioelectric signals such as electrocardiograms (ECG) and electromyograms (EMG), focusing on the electrical activity of the heart and muscles during various states.

Activity 2: Nerve Conduction Velocity Testing

 Measure the conduction velocity of nerves in a controlled experiment, and analyze how different factors, such as temperature or injury, affect nerve signal transmission.

Unit 5: Radiation and Its Effects on the Human Body

Activity 1: Radiation Dosimetry

 Measure and calculate the dose of radiation absorbed by human tissues using dosimetry techniques, and discuss the implications for safety in fire-related environments.

Activity 2: Simulation of Radiation Interaction with Biological Tissue

 Simulate how different types of radiation (e.g., alpha, beta, gamma) interact with biological tissues, focusing on the mechanisms of damage at the cellular and molecular levels.

Unit 6: Optics and Vision in Human Physiology

Activity 1: Optical Properties of the Eye

 Conduct experiments to study the optical properties of the human eye, including refraction, accommodation, and common visual defects such as myopia and hyperopia.

• Activity 2: Laser Safety and Application in Medicine

Explore the use of lasers in medical applications, including laser safety protocols, and conduct basic experiments on laser-tissue interactions, such as cutting or cauterization.

Project 1: Analysis of Joint Range of Motion (ROM)

• **Objective:** Assess the range of motion in different joints and understand its importance in physiotherapy.

Activities:

- 1. Perform ROM measurements on various joints (e.g., shoulder, knee, ankle) using a goniometer.
- 2. Compare the ROM of individuals with different physical activity levels and analyze the results.

Project 2: Respiratory Physiotherapy in Post-Surgery Care

 Objective: Explore the role of respiratory physiotherapy in recovery after chest or abdominal surgery.

Activities:

- 1. Develop a respiratory physiotherapy plan for patients post-surgery, including deep breathing exercises and chest physiotherapy techniques.
- 2. Present a case study of a patient undergoing respiratory physiotherapy postsurgery, focusing on recovery outcomes.

Project 3: Postural Assessment and Correction Techniques

 Objective: Study the effects of poor posture on musculoskeletal health and how physiotherapy can address it.

Activities:

- 1. Conduct a postural assessment on peers or volunteers, identifying common postural issues (e.g., kyphosis, lordosis).
- 2. Design an intervention plan that includes corrective exercises and postural training for the identified issues.

Project 4: Understanding Muscle Fatigue and Recovery

 Objective: Examine the physiological processes of muscle fatigue and the role of physiotherapy in recovery.

• Activities:

- 1. Measure muscle fatigue in a controlled exercise protocol, documenting the onset and recovery time in different muscle groups.
- 2. Create a recovery plan, including stretching, rest, and hydration strategies, to reduce muscle fatigue.

Project 5: Role of Electrotherapy in Pain Management

• **Objective:** Investigate the effectiveness of electrotherapy in managing musculoskeletal pain.

Activities:

- 1. Demonstrate the use of different electrotherapy modalities (e.g., TENS, ultrasound) on simulated pain conditions.
- 2. Present a comparative study on the effectiveness of electrotherapy versus other pain management techniques in a physiotherapy setting.

Project 6: Balance and Coordination Training for Injury Prevention

- **Objective:** Explore the importance of balance and coordination training in preventing falls and injuries.
- Activities:
 - 1. Design a balance training program using tools like balance boards and stability exercises for individuals at risk of falls.
 - 2. Monitor the improvement in balance and coordination in a volunteer before and after a 4-week training program.

Project 7: The Role of Stretching in Flexibility Improvement

- **Objective:** Understand the role of different types of stretching (e.g., static, dynamic) in improving flexibility.
- Activities:
 - 1. Compare the effectiveness of static vs. dynamic stretching on flexibility improvement, conducting pre- and post-test measurements on a group of volunteers.
 - 2. Create an instructional guide on proper stretching techniques, highlighting the benefits for different populations (e.g., athletes, elderly).

Semester III

BVPT-301: Exercise Therapy

Unit 1: Introduction to Exercise Therapy

• Basics of Exercise Therapy

- Definition, principles, and goals of exercise therapy
- o Importance of exercise in rehabilitation and preventive care

• Types of Exercises

- o Active, passive, resistive, and assisted exercises
- o Isometric, isotonic, and isokinetic exercises

Assessment in Exercise Therapy

- o Patient evaluation and exercise prescription
- o Tools and techniques for assessing range of motion, strength, and flexibility

Unit 2: Therapeutic Exercises for Musculoskeletal Conditions

Exercise Prescription for Joint Conditions

- o Exercises for arthritis, joint replacements, and ligament injuries
- o Techniques for improving joint mobility and stability

Muscle Strengthening and Stretching

- o Principles of muscle strengthening and stretching exercises
- o Application of exercises for muscle strains, tears, and imbalances

• Postural Correction Exercises

- o Exercises for correcting postural abnormalities (e.g., scoliosis, kyphosis)
- o Role of exercise therapy in postural re-education

Unit 3: Cardiovascular and Respiratory Exercise Therapy

Aerobic and Endurance Training

- o Principles and benefits of aerobic exercise in cardiovascular health
- Exercise protocols for cardiac rehabilitation

Respiratory Exercises

- o Breathing exercises for improving lung function and capacity
- Techniques for managing respiratory conditions (e.g., COPD, asthma)

Monitoring and Safety

- o Monitoring vital signs during exercise
- Safety considerations and contraindications for cardiovascular and respiratory exercises

Unit 4: Neurological Exercise Therapy

• Neuromuscular Re-Education

- Exercises for improving neuromuscular coordination and control
- Techniques for retraining motor functions after neurological injuries

• Balance and Coordination Exercises

- o Exercises for enhancing balance and coordination in neurological conditions
- o Role of exercise therapy in stroke, Parkinson's disease, and multiple sclerosis

Gait Training

- o Principles and techniques of gait training in neurological rehabilitation
- Use of assistive devices and supportive equipment in gait re-education

Unit 5: Pediatric and Geriatric Exercise Therapy

• Pediatric Exercise Therapy

- o Exercise interventions for developmental disorders and pediatric conditions
- o Role of play therapy and motor learning in children

Geriatric Exercise Therapy

- o Exercise considerations for the elderly population
- Exercises for managing age-related musculoskeletal and cardiovascular conditions

• Fall Prevention and Mobility Enhancement

- Exercises aimed at reducing fall risk in older adults
- o Strategies for improving mobility and functional independence

Unit 6: Special Considerations in Exercise Therapy

• Exercise Therapy in Sports Injuries

- o Rehabilitation exercises for common sports injuries (e.g., sprains, fractures)
- Role of exercise in sports performance enhancement and injury prevention

• Post-Surgical Exercise Therapy

- o Exercise protocols for post-operative rehabilitation
- o Managing complications and promoting recovery through exercise

• Exercise Therapy for Chronic Conditions

- o Tailoring exercise programs for chronic diseases (e.g., diabetes, obesity)
- o Importance of long-term adherence and lifestyle modification

Unit 7: Advanced Techniques in Exercise Therapy

Hydrotherapy

- o Principles and benefits of aquatic exercises
- o Application of hydrotherapy in musculoskeletal and neurological rehabilitation

Pilates and Yoga in Exercise Therapy

- o Integration of Pilates and yoga into exercise therapy programs
- o Techniques for enhancing core stability, flexibility, and mental well-being

• Evidence-Based Practice in Exercise Therapy

- o Importance of research and evidence in developing exercise protocols
- o Review of current literature and emerging trends in exercise therapy

BVPT-302: Introduction to Orthopaedics

Unit 1: Fundamentals of Orthopedics

• Introduction to Orthopedics

- Definition and scope of orthopedics
- o Overview of the musculoskeletal system: bones, joints, muscles, and tendons
- Terms related to fractures, dislocations, sprains, strains, and other musculoskeletal injuries

• Bone Structure and Function

- Anatomy and physiology of bones
- Bone development, growth, and healing processes

Classification of Fractures

- o Types of fractures: open, closed, greenstick, comminuted, etc.
- o Mechanisms of injury and basic principles of fracture management

Unit 2: Joint Disorders and Management

Introduction to Joint Anatomy and Function

- Structure and function of major joints (e.g., shoulder, knee, hip)
- Overview of joint biomechanics

Common Joint Disorders

- o Arthritis (osteoarthritis, rheumatoid arthritis), bursitis, and tendinitis
- Diagnosis and management of joint disorders

• Physiotherapy in Joint Disorders

- o Role of physiotherapy in the management of joint disorders
- Techniques for pain relief, improving joint mobility, and strengthening

Unit 3: Muscular and Soft Tissue Injuries

Muscle Anatomy and Physiology

- o Structure and function of muscles, types of muscle fibers
- o Mechanism of muscle contraction and relaxation

Common Muscular Injuries

- o Muscle strains, tears, myofascial pain syndrome, and muscular dystrophies
- o Diagnosis and management of muscular injuries

Physiotherapy in Soft Tissue Injuries

- o Techniques for managing soft tissue injuries (e.g., RICE, ultrasound, TENS)
- Rehabilitation strategies to restore muscle strength and flexibility

Unit 4: Spine and Back Disorders

Anatomy and Biomechanics of the Spine

- o Structure and function of the vertebral column
- o Spinal curvature and its significance

• Common Spinal Disorders

- o Low back pain, herniated disc, spondylosis, and scoliosis
- o Diagnostic techniques for spinal disorders (e.g., X-ray, MRI, CT scan)

Physiotherapy in Spinal Disorders

- o Role of physiotherapy in managing spinal disorders
- o Techniques for pain management, postural correction, and spinal stabilization

Unit 5: Orthopedic Conditions in Pediatrics and Geriatrics

Pediatric Orthopedics

- Common congenital and developmental orthopedic conditions (e.g., clubfoot, hip dysplasia)
- o Diagnosis and management of pediatric orthopedic conditions

• Geriatric Orthopedics

- o Age-related orthopedic conditions (e.g., osteoporosis, osteoarthritis)
- Challenges and strategies for managing orthopedic conditions in the elderly

• Physiotherapy Approaches in Pediatric and Geriatric Orthopedics

- o Tailoring physiotherapy interventions for children and the elderly
- o Techniques for improving mobility, strength, and quality of life

Unit 6: Sports-Related Orthopedic Injuries

Overview of Sports Injuries

- o Common sports-related injuries (e.g., ACL tear, rotator cuff injury)
- Mechanisms of injury and risk factors in sports
- Diagnosis and Management of Sports Injuries

- o Acute management of sports injuries (e.g., first aid, immobilization)
- o Rehabilitation strategies and return-to-sport protocols

Role of Physiotherapy in Sports Orthopedics

- Preventive strategies for sports injuries
- o Techniques for enhancing performance and preventing re-injury

Unit 7: Surgical Interventions in Orthopedics

• Overview of Orthopedic Surgeries

- o Common surgical procedures (e.g., joint replacement, arthroscopy, spinal surgery)
- o Indications, contraindications, and complications of orthopedic surgeries

• Post-Surgical Rehabilitation

- o Role of physiotherapy in post-surgical rehabilitation
- Techniques for pain management, restoring function, and preventing complications

Advances in Orthopedic Surgery

- Recent advancements in orthopedic surgery (e.g., minimally invasive techniques, robotic surgery)
- o Impact of technological innovations on orthopedic care

BVPT-303: Electrotherapy

Unit 1: Introduction to Electrotherapy

Basics of Electrotherapy

- o Definition, principles, and history of electrotherapy
- o Types of electrotherapy modalities: thermal, electrical, and mechanical
- o Indications and contraindications of electrotherapy

Electrical Properties and Physiological Effects

- Understanding current, voltage, resistance, and power in electrotherapy
- Physiological effects of electrical stimulation on tissues (nerve and muscle excitability, pain modulation)

Safety and Precautions in Electrotherapy

- Safety measures for both patient and therapist
- o Managing adverse effects and complications

Unit 2: Low-Frequency Currents

Direct Current (DC) and Alternating Current (AC)

- o Characteristics and applications of DC (e.g., iontophoresis) and AC (e.g., TENS)
- o Effects on tissues and clinical uses

Transcutaneous Electrical Nerve Stimulation (TENS)

- o Types of TENS (conventional, acupuncture-like, burst mode)
- o Mechanisms of pain relief and indications for use
- Practical application and patient education

Neuromuscular Electrical Stimulation (NMES)

- Principles and effects of NMES on muscle strength and function
- Clinical applications in rehabilitation (e.g., muscle re-education, prevention of atrophy)

Unit 3: Medium-Frequency Currents

• Interferential Therapy (IFT)

- o Principles of IFT and its advantages over other forms of electrical stimulation
- Mechanisms of action and physiological effects
- o Clinical applications, including pain management and muscle stimulation

Russian Currents

- o Characteristics and application of Russian currents in muscle strengthening
- Protocols for enhancing muscle performance and rehabilitation

• Practical Considerations

o Techniques for application, electrode placement, and dosage parameters

Unit 4: High-Frequency Currents

Ultrasound Therapy

- o Principles of therapeutic ultrasound (thermal and non-thermal effects)
- Techniques for application (continuous vs. pulsed modes, coupling mediums)
- o Clinical applications in soft tissue injuries, pain management, and wound healing

Shortwave Diathermy (SWD)

- Mechanisms of action and physiological effects of SWD
- o Indications, contraindications, and safety measures
- o Practical application techniques and dosage settings

• Microwave Diathermy

- o Differences between SWD and microwave diathermy
- Clinical applications and safety considerations

Unit 5: Electromagnetic Therapy

• Principles of Electromagnetic Therapy

- Understanding the electromagnetic spectrum and its relevance to therapy
- Mechanisms of action and therapeutic effects on tissues

Laser Therapy

- Types of therapeutic lasers (low-level, high-intensity)
- o Physiological effects of laser therapy (e.g., pain relief, tissue healing)
- Clinical applications and techniques for effective use

Magnetic Field Therapy

- o Principles of pulsed electromagnetic fields (PEMF) and static magnetic fields
- o Therapeutic effects on bone healing, pain management, and inflammation

Unit 6: Hydrotherapy and Cryotherapy

Hydrotherapy

- o Principles and therapeutic benefits of hydrotherapy
- Techniques and modalities (e.g., whirlpool, contrast baths)
- Clinical applications for musculoskeletal conditions, neurological disorders, and pain management

Cryotherapy

- Principles and physiological effects of cold therapy
- Techniques for application (ice packs, cold baths, cryocuffs)
- o Clinical indications and contraindications

Unit 7: Recent Advances in Electrotherapy

Combination Therapy

- Integration of different electrotherapy modalities for enhanced therapeutic effects
- Clinical protocols and case studies

Biofeedback Therapy

- o Principles and applications of biofeedback in rehabilitation
- o Techniques for monitoring and enhancing muscle function

Evidence-Based Practice in Electrotherapy

- o Review of recent research and developments in electrotherapy
- o Application of evidence-based practice in clinical decision-making

BVPT-321: Practical- Exercise Therapy

Unit 1: Principles of Exercise Therapy

• Activity 1: Designing an Individualized Exercise Program

 Develop and implement an individualized exercise program based on a client's needs, focusing on goals such as improving strength, flexibility, and cardiovascular endurance.

Activity 2: Assessment of Physical Fitness

 Perform a comprehensive physical fitness assessment, including tests for aerobic capacity, muscle strength, flexibility, and body composition.

Unit 2: Therapeutic Exercises for Musculoskeletal Conditions

• Activity 1: Range of Motion Exercises

 Practice and demonstrate range of motion exercises for different joints, focusing on techniques that improve mobility and reduce stiffness.

• Activity 2: Strengthening Exercises for Injury Rehabilitation

 Implement a series of strengthening exercises designed for the rehabilitation of common musculoskeletal injuries, such as sprains and strains.

Unit 3: Cardiovascular Exercise Therapy

Activity 1: Aerobic Exercise Programming

 Design and lead an aerobic exercise session, including activities like walking, cycling, or swimming, aimed at improving cardiovascular health.

• Activity 2: Monitoring Heart Rate and Blood Pressure During Exercise

 Monitor and analyze heart rate and blood pressure responses during different phases of exercise, adjusting intensity to maintain safe and effective levels.

Unit 4: Flexibility and Stretching Techniques

Activity 1: Static and Dynamic Stretching

 Perform and compare the effects of static versus dynamic stretching techniques on muscle flexibility and joint range of motion.

• Activity 2: Flexibility Assessment

 Conduct flexibility assessments using standard tests like the sit-and-reach test, and develop personalized stretching routines based on the results.

Unit 5: Balance and Coordination Training

• Activity 1: Balance Exercises Using Stability Tools

 Engage in balance training exercises using tools like balance boards, stability balls, and foam pads, focusing on improving core strength and stability.

• Activity 2: Coordination Drills

 Perform coordination drills that involve complex movements, such as agility ladder drills, to enhance neuromuscular coordination and reaction time.

Unit 6: Rehabilitation Techniques for Occupational Injuries

• Activity 1: Rehabilitation of Lower Back Pain

 Implement a series of therapeutic exercises aimed at relieving and preventing lower back pain, focusing on core strengthening and proper posture.

• Activity 2: Post-Injury Return-to-Work Conditioning

 Develop a conditioning program to prepare individuals for returning to work after an injury, emphasizing functional movements and endurance relevant to their job tasks.

BVPT-322: Practical- Introduction to Orthopedics

Unit 1: Basic Anatomy of the Musculoskeletal System

• Activity 1: Identification of Bones and Joints

 Identify and label the major bones and joints of the human body using anatomical models or diagrams, focusing on their structure and function.

Activity 2: Understanding Joint Movements

 Demonstrate and analyze different types of joint movements (e.g., flexion, extension, abduction, rotation) through physical examination and models.

Unit 2: Common Orthopedic Conditions and Injuries

Activity 1: Case Study Analysis of Orthopedic Injuries

 Analyze case studies of common orthopedic injuries such as fractures, sprains, and dislocations, discussing the mechanisms, symptoms, and initial management.

Activity 2: Practical Demonstration of Splinting Techniques

 Practice applying different types of splints and immobilization techniques for managing fractures and sprains in emergency situations.

Unit 3: Diagnostic Techniques in Orthopedics

Activity 1: Introduction to X-ray Interpretation

 Learn the basics of interpreting X-rays, focusing on identifying fractures, dislocations, and other common orthopedic abnormalities.

Activity 2: Physical Examination Techniques for Orthopedic Assessment

 Perform basic orthopedic assessment techniques, including palpation, range of motion testing, and special tests for diagnosing musculoskeletal conditions.

Unit 4: Fracture Management and Healing

Activity 1: Stages of Fracture Healing

 Study and illustrate the stages of fracture healing using diagrams or models, and discuss factors that influence the healing process.

Activity 2: Cast Application and Care

 Practice the application of plaster or fiberglass casts for different types of fractures and learn the principles of cast care and patient education.

Unit 5: Orthopedic Surgery Basics

Activity 1: Introduction to Surgical Instruments

 Identify and learn the basic uses of common surgical instruments used in orthopedic procedures, such as forceps, scalpels, and retractors.

• Activity 2: Simulation of Simple Orthopedic Procedures

 Participate in a simulated environment to practice simple orthopedic procedures, such as wound suturing or the reduction of dislocations, using models or mannequins.

Unit 6: Rehabilitation and Post-Operative Care

Activity 1: Post-Operative Mobility Exercises

 Develop and perform a series of post-operative mobility exercises aimed at restoring function and reducing complications after orthopedic surgery.

• Activity 2: Patient Education on Post-Operative Care

 Create and deliver a patient education session focusing on post-operative care instructions, including the importance of rehabilitation, wound care, and monitoring for complications.

BVPT-323: Practical- Electrotherapy

Unit 1: Introduction to Electrotherapy

Activity 1: Understanding Electrical Stimulation Modalities

 Learn about different types of electrical stimulation modalities (e.g., TENS, EMS), including their principles, indications, and contraindications.

Activity 2: Setting Up Electrotherapy Equipment

 Practice the correct setup and operation of basic electrotherapy equipment, including electrode placement and adjusting parameters such as intensity and frequency.

Unit 2: Pain Management with Electrotherapy

• Activity 1: TENS Application for Pain Relief

 Apply Transcutaneous Electrical Nerve Stimulation (TENS) for pain relief on various body parts, focusing on the placement of electrodes and adjusting settings for optimal pain management.

• Activity 2: Evaluation of Pain Reduction

• Assess the effectiveness of TENS therapy in reducing pain through pre- and post-treatment pain scale evaluations, and document the outcomes.

Unit 3: Muscle Stimulation and Rehabilitation

Activity 1: Neuromuscular Electrical Stimulation (NMES)

 Apply NMES to specific muscle groups to enhance muscle strength and function, particularly in post-injury or post-surgery rehabilitation scenarios.

• Activity 2: Monitoring Muscle Response to Stimulation

 Monitor and evaluate muscle response to electrical stimulation, observing changes in muscle contraction strength and endurance over repeated sessions.

Unit 4: Electrotherapy in Wound Healing

• Activity 1: Electrical Stimulation for Wound Healing

 Apply low-intensity electrical stimulation to promote wound healing, focusing on electrode placement around the wound and understanding the effects on tissue regeneration.

Activity 2: Documenting Wound Healing Progress

o Track and document the progress of wound healing over time with and without electrotherapy, using photographic evidence and clinical assessments.

Unit 5: Electrotherapy for Edema Reduction

• Activity 1: High-Voltage Pulsed Current (HVPC) Application

 Use HVPC to reduce edema in affected limbs, learning about electrode placement strategies and optimal settings to facilitate fluid movement and decrease swelling.

Activity 2: Measuring Edema Reduction

 Measure and record changes in limb circumference before and after electrotherapy sessions to evaluate the effectiveness of the treatment in reducing edema.

Unit 6: Safety and Contraindications in Electrotherapy

Activity 1: Identifying Contraindications for Electrotherapy

 Review patient cases to identify potential contraindications for electrotherapy, such as the presence of pacemakers, metal implants, or skin conditions, and discuss alternative treatments.

Activity 2: Safety Protocols in Electrotherapy

 Implement and follow safety protocols during electrotherapy sessions, including proper equipment maintenance, patient monitoring, and emergency procedures in case of adverse reactions.

BVPT-324: Project-III

Project 1: Study of Advanced Exercise Therapy for Post-Injury Rehabilitation

• **Objective:** Explore the application of advanced exercise therapy techniques in post-injury rehabilitation.

Activities:

- 1. Develop a rehabilitation program for a specific injury (e.g., ACL tear or rotator cuff injury) using advanced exercise therapy techniques.
- 2. Monitor and evaluate the patient's recovery progress, focusing on strength, flexibility, and range of motion improvements.

Project 2: Analysis of Biomechanics in Human Movement

• **Objective:** Study the biomechanics of various human movements and their significance in physiotherapy.

Activities:

- 1. Analyze the biomechanics of common movements (e.g., walking, running, lifting) using video analysis tools.
- 2. Identify movement patterns that may lead to injury and suggest corrective physiotherapy interventions.

Project 3: Role of Manual Therapy in Treating Musculoskeletal Disorders

 Objective: Investigate the effectiveness of manual therapy techniques in treating musculoskeletal disorders.

Activities:

- 1. Perform manual therapy techniques (e.g., joint mobilization, soft tissue manipulation) on simulated patients with musculoskeletal conditions.
- 2. Conduct a comparative analysis of manual therapy versus exercise-based therapy in improving patient outcomes.

Project 4: Electrotherapy for Pain Management in Chronic Conditions

• **Objective:** Explore the use of electrotherapy in managing chronic pain conditions like arthritis or sciatica.

Activities:

- 1. Develop a treatment protocol using electrotherapy modalities such as TENS or ultrasound for chronic pain relief.
- 2. Evaluate the effectiveness of the treatment by monitoring pain reduction and functional improvements in patients.

Project 5: Designing a Strength Training Program for Elderly Patients

• **Objective:** Create a strength training program for elderly patients to improve mobility, strength, and balance.

Activities:

- 1. Design a strength training regimen focusing on key muscle groups for elderly patients, emphasizing safety and progression.
- 2. Implement the program on volunteers or simulated patients and assess improvements in mobility, strength, and fall risk reduction.

Project 6: Study of Respiratory Physiotherapy in Pulmonary Rehabilitation

• **Objective:** Examine the role of respiratory physiotherapy in pulmonary rehabilitation for patients with conditions like COPD.

Activities:

- 1. Develop a pulmonary rehabilitation program that includes breathing exercises, airway clearance techniques, and exercise training.
- 2. Track patient progress by assessing improvements in lung function, endurance, and quality of life.

Project 7: Sports Injury Prevention and Rehabilitation

• **Objective:** Investigate physiotherapy techniques for preventing and rehabilitating sports injuries.

Activities:

1. Design a sports injury prevention program focusing on warm-ups, strengthening, and flexibility exercises.

2.	Develop a post-injury rehabilitation plan for a common sports injury (e.g., ankle sprain or hamstring strain) and evaluate its effectiveness through patient feedback and performance assessments.

Semester IV

BVPT-401: Advance Exercise Therapy

Unit 1: Advanced Therapeutic Exercises

Principles of Advanced Exercise Prescription

- Concepts of overload, specificity, progression, and periodization
- o Individualized exercise programming based on patient assessment

Resistance Training

- o Advanced techniques in resistance training (e.g., isokinetic, eccentric, plyometrics)
- o Applications in rehabilitation and strength conditioning

• Functional Training

- o Incorporating functional movements into therapeutic exercises
- o Balance, agility, and coordination training

Unit 2: Neuromuscular Rehabilitation

Proprioceptive Neuromuscular Facilitation (PNF)

- o Advanced PNF techniques and their clinical applications
- o Integration of PNF in the rehabilitation of neuromuscular disorders

Motor Control and Learning

- o Principles of motor control and motor learning in rehabilitation
- Techniques for enhancing motor recovery in neurological patients

Gait Training

- Advanced gait analysis and training techniques
- Use of assistive devices and robotic technology in gait rehabilitation

Unit 3: Cardiopulmonary Rehabilitation

• Aerobic Conditioning

- Advanced techniques in aerobic exercise programming
- o Exercise testing and prescription for cardiovascular and pulmonary conditions

Respiratory Muscle Training

- o Techniques for improving respiratory muscle strength and endurance
- Applications in chronic respiratory conditions (e.g., COPD, asthma)

High-Intensity Interval Training (HIIT)

- o Principles and protocols for HIIT in rehabilitation
- o Benefits and risks associated with high-intensity training in various populations

Unit 4: Sports-Specific Rehabilitation

• Injury Prevention and Management

- Advanced strategies for preventing sports injuries
- o Rehabilitation protocols for common sports injuries (e.g., ACL, rotator cuff)

• Return-to-Sport Criteria

- o Assessment and decision-making for return-to-sport
- o Functional testing and performance evaluation

Sports-Specific Conditioning

- Tailoring exercise programs to the specific demands of various sports
- o Integration of strength, speed, agility, and endurance training

Unit 5: Pain Management Through Exercise

Chronic Pain and Exercise

- o Understanding the role of exercise in managing chronic pain conditions
- o Techniques for modifying exercises to alleviate pain and improve function

Exercise for Fibromyalgia and Myofascial Pain

- Specialized exercise programs for fibromyalgia patients
- Myofascial release techniques and their integration into exercise therapy

• Multimodal Approach to Pain Management

 Combining exercise with other therapeutic modalities (e.g., manual therapy, electrotherapy) for comprehensive pain management

Unit 6: Pediatric and Geriatric Exercise Therapy

Pediatric Exercise Therapy

- o Special considerations for exercise prescription in children
- Rehabilitation strategies for pediatric conditions (e.g., cerebral palsy, muscular dystrophy)

• Geriatric Exercise Therapy

- o Advanced exercise strategies for the elderly population
- o Addressing issues like sarcopenia, osteoporosis, and balance disorders

Adapted Physical Activity

- o Modifying exercises for individuals with physical disabilities
- o Integration of adaptive equipment and techniques in exercise therapy

Unit 7: Evidence-Based Practice in Exercise Therapy

Research Methodology in Exercise Science

- o Understanding research designs, data analysis, and interpretation
- Critical appraisal of exercise therapy literature

Application of Evidence-Based Practice

- o Translating research findings into clinical practice
- o Developing and implementing evidence-based exercise protocols

• Future Trends in Exercise Therapy

- o Emerging techniques and technologies in exercise therapy
- The role of virtual reality, tele-rehabilitation, and wearable technology in future practice

BVPT-402: Advance Electro Therapy

Unit 1: Principles of Electrotherapy

Fundamentals of Electrical Stimulation

- Basic principles of electrical currents and their interaction with biological tissues
- Understanding waveforms, frequency, and amplitude

• Electrophysiological Responses

- o Mechanisms of nerve and muscle stimulation
- Physiological effects of electrical stimulation on tissues

Safety and Precautions

- Safety guidelines and contraindications
- o Proper electrode placement and equipment handling

Unit 2: Electrotherapy Modalities

Transcutaneous Electrical Nerve Stimulation (TENS)

- o Advanced techniques and protocols for pain management
- Clinical applications and case studies

• Electrical Muscle Stimulation (EMS)

- o Techniques for muscle strengthening, re-education, and atrophy prevention
- Application in rehabilitation and sports medicine

• Interferential Current Therapy (IFC)

- o Principles of IFC and its use in pain relief and edema control
- Protocols for effective treatment.

Unit 3: Advanced Electrotherapy Techniques

High-Voltage Pulsed Current (HVPC)

- o Indications and techniques for wound healing and edema reduction
- Comparison with other electrotherapy modalities

Iontophoresis

- o Mechanisms and applications for drug delivery through the skin
- o Preparation of medication and electrode placement

• Neuromuscular Electrical Stimulation (NMES)

- o Advanced NMES techniques for functional improvement
- o Integration with other therapeutic modalities

Unit 4: Electrotherapy in Specific Conditions

• Orthopedic Conditions

- Application of electrotherapy in the management of fractures, sprains, and postsurgical rehabilitation
- o Protocols for improving joint mobility and muscle strength

Neurological Disorders

- Electrotherapy techniques for stroke rehabilitation, spinal cord injuries, and peripheral nerve injuries
- Customizing treatments for neurological conditions

Dermatological Conditions

- o Use of electrotherapy for skin conditions, wound healing, and scar management
- Case studies and clinical applications

Unit 5: Combining Electrotherapy with Other Modalities

Electrotherapy and Manual Therapy

- o Integrating electrotherapy with manual techniques for enhanced outcomes
- Protocols for combined therapy approaches

Electrotherapy and Exercise Therapy

- Synergistic effects of combining electrotherapy with therapeutic exercises
- Designing comprehensive treatment plans

Electrotherapy and Heat/Cold Therapy

- o Application of electrotherapy in conjunction with thermal modalities
- o Guidelines for effective integration

Unit 6: Clinical Assessment and Treatment Planning

Patient Assessment Techniques

- o Comprehensive evaluation for selecting appropriate electrotherapy modalities
- o Functional and subjective assessment methods

Designing Treatment Protocols

- o Developing individualized electrotherapy plans based on patient needs
- Monitoring and adjusting treatment based on progress

Documentation and Outcome Measurement

- o Recording treatment parameters and patient responses
- o Evaluating treatment efficacy and making necessary adjustments

BVPT-403: General Medicine

Unit 1: Introduction to General Medicine

Overview of General Medicine

- Definition and scope of general medicine
- o Role of a physiotherapist in general medical conditions

• Basic Principles of Internal Medicine

- o Understanding common internal medical conditions and their management
- General approach to diagnosing and treating diseases

Patient Assessment and Clinical Examination

- Techniques for effective patient history taking
- Basic clinical examination skills for physiotherapists

Unit 2: Cardiovascular System

Anatomy and Physiology of the Cardiovascular System

- o Structure and function of the heart and blood vessels
- o Common cardiovascular diseases

• Common Cardiovascular Disorders

- Hypertension, coronary artery disease, heart failure
- Diagnostic methods and management strategies

Role of Physiotherapy in Cardiovascular Conditions

- o Rehabilitation protocols for cardiovascular patients
- o Exercise guidelines and patient education

Unit 3: Respiratory System

Anatomy and Physiology of the Respiratory System

- Structure and function of the lungs and respiratory pathways
- Respiratory mechanics and gas exchange

Common Respiratory Disorders

- o Asthma, chronic obstructive pulmonary disease (COPD), pneumonia
- Diagnostic methods and treatment approaches

Role of Physiotherapy in Respiratory Conditions

- Respiratory physiotherapy techniques
- o Pulmonary rehabilitation and breathing exercises

Unit 4: Gastrointestinal System

Anatomy and Physiology of the Gastrointestinal System

- Structure and function of the digestive organs
- Digestive processes and nutrient absorption

Common Gastrointestinal Disorders

Peptic ulcer disease, inflammatory bowel disease (IBD), liver disorders

- o Diagnostic methods and management strategies
- Role of Physiotherapy in Gastrointestinal Conditions
 - Physiotherapy interventions for gastrointestinal disorders
 - Lifestyle modifications and patient education

Unit 5: Musculoskeletal System

- Anatomy and Physiology of the Musculoskeletal System
 - o Structure and function of bones, muscles, and joints
 - Basic musculoskeletal biomechanics
- Common Musculoskeletal Disorders
 - Osteoarthritis, rheumatoid arthritis, osteoporosis
 - o Diagnostic methods and treatment approaches
- Role of Physiotherapy in Musculoskeletal Conditions
 - o Rehabilitation techniques for musculoskeletal disorders
 - Exercise therapy and manual therapy

Unit 6: Endocrine and Metabolic Disorders

- Anatomy and Physiology of the Endocrine System
 - o Structure and function of endocrine glands
 - o Hormonal regulation and metabolic processes
- Common Endocrine Disorders
 - o Diabetes mellitus, thyroid disorders, adrenal insufficiency
 - o Diagnostic methods and management strategies
- Role of Physiotherapy in Endocrine Disorders
 - o Physiotherapy interventions for diabetes management
 - Exercise guidelines and patient education

Unit 7: Neurological System

- Anatomy and Physiology of the Neurological System
 - o Structure and function of the brain, spinal cord, and peripheral nerves
 - Basic neurological functions and reflexes
- Common Neurological Disorders
 - o Stroke, Parkinson's disease, multiple sclerosis
 - Diagnostic methods and treatment approaches
- Role of Physiotherapy in Neurological Conditions
 - Neurological rehabilitation techniques
 - Functional training and patient education

BVPT-421: Practical- Advance Exercise Therapy

Unit 1: Advanced Strength Training Techniques

- Activity 1: Design and Implementation of Periodized Strength Training Programs
 - Develop and execute a periodized strength training program tailored to enhance specific muscle groups, focusing on progression, overload, and recovery strategies.
- Activity 2: Advanced Resistance Training with Free Weights and Machines
 - Perform advanced resistance exercises using both free weights and machines, emphasizing proper technique, muscle activation, and injury prevention.

Unit 2: Functional Training for Occupational Performance

Activity 1: Creating Functional Training Circuits

 Design and conduct functional training circuits that mimic occupational tasks, such as lifting, carrying, and climbing, to improve job-specific fitness and reduce injury risk.

• Activity 2: Assessment of Functional Movement Patterns

 Analyze and correct functional movement patterns using techniques like the Functional Movement Screen (FMS) to identify and address biomechanical deficiencies.

Unit 3: Cardiovascular Conditioning for High-Intensity Environments

Activity 1: High-Intensity Interval Training (HIIT) Protocols

 Implement and monitor HIIT protocols designed to improve cardiovascular endurance and recovery in high-stress situations, such as firefighting or emergency response.

Activity 2: Cardiopulmonary Testing and Analysis

 Conduct and interpret results from cardiopulmonary exercise tests (e.g., VO2 max testing) to assess cardiovascular fitness levels and adapt training programs accordingly.

Unit 4: Flexibility and Mobility Enhancement

Activity 1: Advanced Stretching Techniques

 Practice and evaluate the effectiveness of advanced stretching techniques, including PNF (Proprioceptive Neuromuscular Facilitation) and dynamic stretches, to enhance flexibility and range of motion.

• Activity 2: Mobility Drills for Injury Prevention

 Design and perform mobility drills targeting key joints and muscle groups to improve functional movement and reduce the risk of injury during physical activities.

Unit 5: Rehabilitation Exercises for Chronic Conditions

• Activity 1: Exercise Prescription for Chronic Lower Back Pain

 Develop and implement an exercise regimen tailored to individuals with chronic lower back pain, focusing on core stabilization, postural correction, and pain management.

Activity 2: Rehabilitation of Recurrent Musculoskeletal Injuries

 Create and execute a rehabilitation program for recurrent musculoskeletal injuries, incorporating progressive strengthening, proprioception, and functional exercises.

Unit 6: Monitoring and Evaluation of Exercise Programs

Activity 1: Use of Wearable Technology for Exercise Monitoring

 Utilize wearable technology (e.g., heart rate monitors, activity trackers) to monitor and analyze physiological responses during exercise, adjusting programs based on data collected.

• Activity 2: Evaluation of Exercise Program Effectiveness

 Conduct pre- and post-assessments of physical performance and health markers to evaluate the effectiveness of an exercise program, making necessary modifications to achieve desired outcomes.

BVPT-422: Practical- Advance Electro Therapy

Unit 1: Advanced Pain Management Techniques

Activity 1: Application of Interferential Therapy (IFT)

 Practice the application of Interferential Therapy for deep tissue pain management, focusing on electrode placement, frequency modulation, and patient comfort.

Activity 2: Combining Electrotherapy Modalities for Chronic Pain

 Combine multiple electrotherapy modalities, such as TENS and IFT, in a single treatment session to address chronic pain, and evaluate the effectiveness of combined therapies.

Unit 2: Muscle Re-education and Strengthening

Activity 1: Functional Electrical Stimulation (FES) for Muscle Re-education

 Apply Functional Electrical Stimulation to specific muscle groups to facilitate muscle re-education in patients recovering from nerve injuries or muscle atrophy.

• Activity 2: Use of High-Voltage Pulsed Current (HVPC) for Muscle Strengthening

 Utilize HVPC to target and strengthen weakened muscles, adjusting parameters to optimize muscle contraction and avoid fatigue during therapy sessions.

Unit 3: Electrotherapy in Wound Healing

• Activity 1: Microcurrent Therapy for Wound Healing

 Perform microcurrent therapy on simulated or real wounds to enhance tissue repair, discussing the underlying mechanisms and appropriate settings for different wound types.

Activity 2: Evaluating Wound Healing Progress with Electrotherapy

 Monitor and document wound healing progress using electrotherapy over multiple sessions, analyzing changes in wound size, granulation tissue formation, and healing rate.

Unit 4: Advanced Techniques in Edema Control

Activity 1: Lymphatic Drainage using Electrotherapy

 Apply low-frequency electrotherapy techniques to promote lymphatic drainage and reduce edema in affected limbs, focusing on electrode placement and treatment duration.

• Activity 2: Assessing the Effectiveness of Edema Reduction Strategies

 Measure and compare limb circumference and volume before and after electrotherapy sessions aimed at reducing edema, evaluating the effectiveness of different techniques.

Unit 5: Neuromodulation Techniques

Activity 1: Application of Transcranial Magnetic Stimulation (TMS)

 Learn the basics of Transcranial Magnetic Stimulation and its application in treating neurological conditions, focusing on safety protocols and patient selection.

Activity 2: Deep Brain Stimulation (DBS) Simulation

 Participate in a simulated environment to understand the principles and application of Deep Brain Stimulation, including electrode placement and parameter adjustment.

Unit 6: Safety, Ethics, and Advanced Patient Care

Activity 1: Safety Protocols in Advanced Electrotherapy

 Review and practice advanced safety protocols for electrotherapy, including managing devices, monitoring patients, and handling emergency situations.

Activity 2: Ethical Considerations in Electrotherapy

 Discuss ethical issues related to electrotherapy, such as informed consent, patient autonomy, and the use of emerging technologies, and apply these principles in case studies.

BVPT-423: Practical- General Medicine

Unit 1: Basic Clinical Examination Skills

• Activity 1: Conducting a Comprehensive Physical Examination

 Practice performing a full physical examination, including inspection, palpation, percussion, and auscultation, focusing on systematic evaluation of major body systems (e.g., cardiovascular, respiratory, abdominal).

Activity 2: Documenting Clinical Findings

 Record and analyze clinical findings from physical examinations using standardized documentation formats, and discuss the interpretation of results.

Unit 2: Vital Signs Monitoring

• Activity 1: Measuring and Interpreting Vital Signs

 Measure vital signs (e.g., blood pressure, heart rate, respiratory rate, temperature) using various devices, and interpret the data to assess the patient's overall health status.

Activity 2: Emergency Vital Signs Management

 Simulate scenarios involving abnormal vital signs (e.g., hypotension, tachycardia) and practice appropriate emergency responses and interventions.

Unit 3: Diagnostic Procedures and Laboratory Tests

• Activity 1: Collection and Handling of Biological Samples

 Practice the collection, labeling, and handling of biological samples (e.g., blood, urine) for diagnostic testing, ensuring adherence to proper procedures and infection control practices.

• Activity 2: Interpretation of Common Laboratory Test Results

 Analyze and interpret results from common laboratory tests, such as complete blood count (CBC), blood glucose levels, and urine analysis, and discuss their clinical significance.

Unit 4: Basic First Aid and Emergency Care

Activity 1: First Aid Techniques for Common Injuries

- Demonstrate first aid techniques for managing common injuries and emergencies (e.g., burns, fractures, cuts), including wound care, splinting, and basic life support (BLS).
- Activity 2: Simulation of Emergency Response Scenarios

 Participate in simulated emergency response scenarios to practice and refine first aid and emergency care skills, including team coordination and patient assessment.

Unit 5: Infectious Disease Management

Activity 1: Prevention and Control of Infectious Diseases

- Learn and apply infection control measures, such as proper hand hygiene, use of personal protective equipment (PPE), and disinfection techniques, to prevent the spread of infectious diseases.
- Activity 2: Case Study Analysis of Infectious Disease Outbreaks
 - Analyze case studies of infectious disease outbreaks, discussing transmission patterns, public health responses, and preventive strategies.

Unit 6: Pharmacology and Medication Administration

• Activity 1: Understanding Medication Dosages and Routes

- Study and practice calculating medication dosages, understanding different routes of administration (e.g., oral, intravenous), and ensuring accurate and safe medication delivery.
- Activity 2: Monitoring and Managing Medication Side Effects
 - Monitor patients for potential side effects and adverse reactions to medications, and develop strategies for managing and mitigating these effects in clinical settings.

BVPT-424: Project-IV

Project 1: Development and Evaluation of a Home Exercise Program for Chronic Pain

- **Objective:** Design a home-based exercise program for individuals with chronic pain conditions and assess its effectiveness.
- Activities:
 - 1. Create a comprehensive exercise plan focusing on pain management, flexibility, and strength.
 - 2. Implement the program with a group of participants and evaluate pain levels, mobility, and overall function through pre- and post-assessments.

Project 2: Comparative Study of Physiotherapy Techniques in Treating Sports Injuries

- **Objective:** Compare the effectiveness of different physiotherapy techniques for treating common sports injuries.
- Activities:
 - 1. Choose two or more physiotherapy techniques (e.g., manual therapy, exercise therapy, electrotherapy) for treating a specific sports injury.
 - 2. Conduct a comparative analysis based on patient outcomes, including recovery time, pain relief, and functional improvements.

Project 3: Evaluation of Post-Surgical Rehabilitation Protocols

 Objective: Assess the effectiveness of various post-surgical rehabilitation protocols for different types of surgeries.

Activities:

- 1. Develop rehabilitation protocols for common surgeries (e.g., hip replacement, ACL reconstruction).
- 2. Track and analyze patient recovery metrics, including range of motion, strength, and functional performance, to determine protocol effectiveness.

Project 4: Analysis of Physiotherapy Interventions in Neurological Disorders

• **Objective:** Explore the role of physiotherapy in managing neurological disorders such as stroke or Parkinson's disease.

Activities:

- 1. Design a physiotherapy intervention program tailored for a specific neurological disorder.
- 2. Implement the program and assess patient outcomes, including improvements in motor function, coordination, and quality of life.

Project 5: Development of a Fall Prevention Program for the Elderly

• **Objective:** Create and evaluate a fall prevention program aimed at reducing fall risk in elderly individuals.

Activities:

- 1. Develop a comprehensive fall prevention program incorporating strength training, balance exercises, and environmental modifications.
- 2. Implement the program with elderly participants and assess changes in fall risk factors, balance, and confidence levels.

Project 6: Integrating Assistive Technology in Physiotherapy Practice

• **Objective:** Investigate the use of assistive technology (e.g., gait trainers, smart braces) in enhancing physiotherapy outcomes.

• Activities:

- 1. Research and present on various assistive technologies and their applications in physiotherapy.
- 2. Develop a case study or pilot project using assistive technology with patients, evaluating its impact on rehabilitation and functional improvements.

Project 7: Patient Education and Self-Management in Physiotherapy

• **Objective:** Develop and assess patient education programs that promote self-management and adherence to physiotherapy interventions.

Activities:

- 1. Create educational materials (e.g., brochures, videos) on self-management techniques and the importance of adherence to physiotherapy regimens.
- 2. Implement these materials in a clinical setting and evaluate their effectiveness based on patient understanding, engagement, and adherence rates.

Semester V

BVPT-501: Community Medicine

Unit 1: Introduction to Community Medicine

Definition and Scope

- Understanding community medicine and its importance in healthcare
- o Role of community medicine in preventive health

• Epidemiology Basics

- o Principles of epidemiology and its application in community health
- o Epidemiological methods and study designs

• Community Health System

- o Structure and function of community health systems
- o Key stakeholders and their roles in community health

Unit 2: Health Promotion and Disease Prevention

Health Promotion Strategies

- o Principles and practices of health promotion
- o Community-based health education and awareness programs

• Disease Prevention Methods

- Primary, secondary, and tertiary prevention strategies
- Vaccination programs and screening services

• Role of Physiotherapy in Health Promotion

- o Community physiotherapy interventions for health promotion
- Designing and implementing health promotion programs

Unit 3: Environmental Health

Environmental Health Concepts

- o Impact of environmental factors on health (air, water, sanitation)
- o Environmental pollution and its effects on community health

Environmental Health Management

- o Strategies for managing environmental health issues
- o Community initiatives for environmental improvement

Physiotherapy's Role in Environmental Health

- Addressing environmental health concerns through physiotherapy
- o Community engagement in environmental health projects

Unit 4: Maternal and Child Health

Maternal Health

- Key aspects of maternal health care and services
- Common maternal health issues and their management

Child Health

- o Growth and development milestones in children
- Common childhood illnesses and preventive measures

• Role of Physiotherapy in Maternal and Child Health

- o Physiotherapy interventions for pregnant women and children
- o Community programs focused on maternal and child health

Unit 5: Chronic Disease Management

Overview of Chronic Diseases

- o Common chronic diseases in the community (e.g., diabetes, hypertension)
- Impact of chronic diseases on quality of life

• Management and Support

- o Strategies for managing chronic diseases at the community level
- o Role of multidisciplinary teams in chronic disease management

• Physiotherapy's Role in Chronic Disease Management

- o Physiotherapy interventions for chronic disease management
- o Community-based support and rehabilitation programs

Unit 6: Community Health Assessment

Health Needs Assessment

- Techniques for assessing community health needs
- Methods for collecting and analyzing health data

Health Surveys and Data Analysis

- o Designing and conducting health surveys
- o Interpreting and utilizing health data for community planning

• Physiotherapy's Role in Health Assessment

- Conducting health assessments relevant to physiotherapy
- o Using assessment data to design community physiotherapy programs

Unit 7: Health Policies and Programs

Health Policy Framework

- o Understanding health policies and their impact on community health
- o Key health policies and programs at local, national, and global levels

• Program Planning and Evaluation

- o Designing, implementing, and evaluating community health programs
- Strategies for improving program effectiveness and sustainability

Physiotherapy's Involvement in Health Policies

- Advocacy and policy development in community health
- o Contributions of physiotherapy to health policy and program development

BVPT-502: Clinical Orthopedics

Unit 1: Introduction to Orthopedics

• Overview of Orthopedics

- Definition and scope of orthopedics
- o Common musculoskeletal disorders and their impact on health

Anatomy and Biomechanics

- o Detailed study of musculoskeletal anatomy relevant to orthopedics
- Biomechanics of bone and joint functions

Diagnostic Techniques

- o Overview of diagnostic methods (X-rays, MRI, CT scans)
- o Interpretation of common orthopedic imaging

Unit 2: Orthopedic Conditions and Injuries

• Trauma and Fractures

- Classification and management of fractures
- Fracture healing process and complications

Dislocations and Sprains

- Types of dislocations and sprains
- o Management and rehabilitation strategies

• Common Orthopedic Disorders

- Osteoarthritis, rheumatoid arthritis, and other degenerative conditions
- Management and physiotherapy interventions

Unit 3: Orthopedic Examination and Assessment

• Clinical Examination Techniques

- o Assessment of range of motion, strength, and function
- o Special tests for specific orthopedic conditions

• Patient History and Documentation

- Taking a detailed patient history related to orthopedic issues
- Documentation and interpretation of findings

Functional Assessment

- Evaluating functional limitations and disability
- Designing physiotherapy interventions based on assessment

Unit 4: Orthopedic Management Strategies

• Conservative Management

- Principles of non-surgical treatment (medications, physiotherapy, and orthotic devices)
- o Rehabilitation protocols for common orthopedic conditions

Surgical Interventions

- Overview of common orthopedic surgeries (arthroscopy, joint replacement, etc.)
- Post-surgical rehabilitation and recovery

Pain Management

- o Techniques for managing pain in orthopedic patients
- Role of physiotherapy in pain relief

Unit 5: Gait Analysis and Orthotic Management

Gait Analysis

- o Techniques for assessing gait and movement abnormalities
- o Role of gait analysis in orthopedic assessment and treatment

Orthotic Devices

- Types of orthotic devices and their indications
- Customization and fitting of orthotics

Physiotherapy for Orthotic Management

- Rehabilitation strategies for patients using orthotic devices
- Monitoring and adjusting orthotic interventions

Unit 6: Sports Orthopedics

Sports Injuries

- Common sports-related injuries and their management
- Prevention strategies for sports injuries

• Rehabilitation for Sports Injuries

- o Physiotherapy interventions for rehabilitation of sports injuries
- o Functional recovery and return-to-play protocols

Performance Enhancement

- o Techniques for improving athletic performance through physiotherapy
- o Role of physiotherapy in injury prevention and performance optimization

Unit 7: Pediatric and Geriatric Orthopedics

• Pediatric Orthopedics

- o Common orthopedic conditions in children (congenital, developmental)
- Management and treatment approaches for pediatric orthopedic issues

• Geriatric Orthopedics

- o Orthopedic conditions prevalent in the elderly (osteoporosis, frailty)
- o Strategies for managing and rehabilitating geriatric patients

Physiotherapy Considerations

- o Tailoring physiotherapy interventions for pediatric and geriatric populations
- o Addressing unique challenges in these age groups

BVPT-503: Clinical Neurology & Neurosurgery

Unit 1: Introduction to Clinical Neurology

Overview of Neurology

- Definition and scope of clinical neurology
- Basic principles of neurology

Neuroanatomy

- Structure and function of the central nervous system (CNS)
- o Neuroanatomical pathways and their clinical significance

• Neurological Assessment

- o Techniques for neurological examination
- Tools and tests for assessing neurological function

Unit 2: Common Neurological Disorders

Stroke and Transient Ischemic Attacks (TIAs)

- Pathophysiology, types, and clinical presentation
- o Management and rehabilitation strategies

Parkinson's Disease

- o Symptoms, progression, and management
- o Physiotherapy interventions and symptom management

Multiple Sclerosis and Other Demyelinating Diseases

- o Clinical features, diagnosis, and treatment
- o Rehabilitation strategies for demyelinating diseases

Unit 3: Neuromuscular Disorders

Amyotrophic Lateral Sclerosis (ALS) and Motor Neuron Diseases

- o Clinical presentation, diagnosis, and management
- o Physiotherapy approaches for symptom relief and function preservation

Peripheral Neuropathy

- o Types, causes, and symptoms
- o Rehabilitation techniques and management

Muscular Dystrophies

Overview of different types and their progression

o Physiotherapy interventions for muscle strengthening and functional maintenance

Unit 4: Epilepsy and Seizure Disorders

Epilepsy

- Classification, types, and management of epilepsy
- Physiotherapy considerations for patients with epilepsy

• Seizure Management

- o First aid for seizures and emergency response
- o Long-term management and rehabilitation strategies

Unit 5: Neurosurgical Conditions and Interventions

Common Neurosurgical Procedures

- Overview of surgeries such as craniotomy, spinal surgery, and deep brain stimulation
- o Post-surgical care and rehabilitation

Traumatic Brain Injury (TBI)

- o Types of brain injuries, assessment, and management
- o Physiotherapy approaches for TBI rehabilitation

• Tumors of the Nervous System

- o Types of tumors, symptoms, and management
- o Post-operative care and physiotherapy considerations

Unit 6: Neurorehabilitation Techniques

• Rehabilitation Strategies

- o Techniques for neurological rehabilitation (motor learning, functional training)
- Use of assistive devices and technology in rehabilitation

Cognitive and Behavioral Therapy

- o Approaches for cognitive and behavioral rehabilitation
- o Integration of therapy with physical rehabilitation

Multidisciplinary Approach

- o Role of physiotherapy within a multidisciplinary team
- o Coordination with other healthcare professionals

Unit 7: Pediatric and Geriatric Neurology

Pediatric Neurology

- Common neurological disorders in children (cerebral palsy, developmental delays)
- Assessment and treatment strategies for pediatric patients

Geriatric Neurology

- Neurological conditions prevalent in the elderly (Alzheimer's disease, age-related cognitive decline)
- Physiotherapy interventions for geriatric populations

Integrative Approaches

- Combining physiotherapy with other therapeutic modalities for pediatric and geriatric patients
- o Case studies and practical applications

BVPT-521: Practical- Physical Assessment & Manipulative Skills

Unit 1: Fundamental Physical Assessment Techniques

Activity 1: Performing a Comprehensive Physical Examination

 Conduct a complete physical examination, including assessment of vital signs, general appearance, and systemic examination (cardiovascular, respiratory, musculoskeletal).

Activity 2: Documenting and Interpreting Physical Findings

 Record and interpret physical findings, focusing on identifying normal versus abnormal results and their potential clinical significance.

Unit 2: Advanced Musculoskeletal Assessment

Activity 1: Joint and Muscle Evaluation

 Perform detailed assessments of joint function and muscle strength, including range of motion tests and muscle grading, to identify any musculoskeletal abnormalities.

Activity 2: Gait Analysis and Postural Assessment

 Analyze and evaluate gait patterns and postural alignment to identify any deviations or issues that could affect physical performance or lead to injury.

Unit 3: Cardiovascular and Respiratory System Assessment

Activity 1: Auscultation and Palpation Techniques

 Practice auscultation of heart and lung sounds using a stethoscope and palpation of peripheral pulses, assessing for normal and abnormal findings.

Activity 2: Assessment of Cardiovascular and Respiratory Function

 Conduct tests to assess cardiovascular and respiratory function, such as blood pressure measurement and breath sound evaluation, interpreting the results in the context of overall health.

Unit 4: Manipulative Techniques for Injury Management

• Activity 1: Application of Therapeutic Massage Techniques

 Demonstrate and practice therapeutic massage techniques aimed at relieving muscle tension, improving circulation, and supporting injury recovery.

Activity 2: Joint Mobilization and Manipulation

 Perform joint mobilization and manipulation techniques to enhance joint mobility and alleviate pain, focusing on correct techniques and patient safety.

Unit 5: Functional Movement Assessment

Activity 1: Functional Movement Screen (FMS)

 Administer and interpret the Functional Movement Screen to assess fundamental movement patterns and identify any deficiencies or risk factors for injury.

Activity 2: Designing Functional Exercise Programs

 Create and implement functional exercise programs based on movement assessment results, focusing on improving strength, flexibility, and coordination.

Unit 6: Emergency Physical Assessment and Response

• Activity 1: Rapid Trauma Assessment

 Conduct a rapid trauma assessment in simulated emergency scenarios, including primary and secondary surveys to identify life-threatening conditions and prioritize interventions.

Activity 2: Application of First Aid Techniques

 Practice first aid techniques for managing common injuries and emergencies, such as CPR, wound care, and splinting, ensuring effective and prompt responses in emergency situations.

BVPT-522: Practical- Therapeutics Exercise & Massage

Unit 1: Introduction to Therapeutic Exercise

Activity 1: Designing Exercise Programs for Different Populations

 Develop individualized therapeutic exercise programs for various populations, such as athletes, elderly patients, and those with chronic conditions, focusing on specific goals like strength, flexibility, or endurance.

• Activity 2: Demonstration of Basic Therapeutic Exercises

 Perform and demonstrate basic therapeutic exercises, including stretching, strengthening, and range-of-motion exercises, with attention to proper form and technique.

Unit 2: Advanced Stretching and Flexibility Techniques

Activity 1: Proprioceptive Neuromuscular Facilitation (PNF) Stretching

 Practice PNF stretching techniques to enhance muscle flexibility and range of motion, focusing on the correct application of contract-relax and hold-relax methods.

Activity 2: Dynamic vs. Static Stretching

 Compare and contrast the effectiveness of dynamic and static stretching techniques, implementing both in a therapeutic context and assessing their impact on patient mobility.

Unit 3: Strengthening and Conditioning

Activity 1: Resistance Training with Equipment

 Implement resistance training exercises using various equipment (e.g., resistance bands, weights) to target different muscle groups, emphasizing proper technique and progression.

• Activity 2: Core Stabilization Exercises

 Demonstrate and practice core stabilization exercises designed to strengthen the core muscles, focusing on exercises such as planks, bridges, and abdominal crunches.

Unit 4: Massage Therapy Techniques

Activity 1: Swedish Massage Application

 Perform Swedish massage techniques, including effleurage, petrissage, friction, and tapotement, focusing on their therapeutic benefits for muscle relaxation and stress relief.

Activity 2: Deep Tissue Massage Techniques

 Practice deep tissue massage techniques aimed at releasing muscle tension and adhesions, with emphasis on patient communication, pressure control, and contraindications.

Unit 5: Exercise Therapy for Rehabilitation

Activity 1: Rehabilitation Exercises for Post-Surgery Patients

 Design and implement exercise programs for patients recovering from surgery, such as knee replacement or spinal surgery, with a focus on safe progression and restoring functional mobility.

• Activity 2: Balance and Coordination Exercises

 Conduct balance and coordination exercises to enhance proprioception and stability, particularly for patients recovering from lower limb injuries or neurological conditions.

Unit 6: Manual Therapy Integration with Exercise

Activity 1: Combining Massage with Therapeutic Exercise

 Integrate massage techniques with therapeutic exercises in a treatment session, focusing on optimizing muscle recovery and improving patient outcomes.

Activity 2: Myofascial Release Techniques

 Practice myofascial release techniques to alleviate muscle tightness and improve flexibility, understanding the role of fascia in movement and its impact on overall musculoskeletal health.

BVPT-523: Practical- Clinical Neurology & Neurosurgery

Unit 1: Neurological Assessment Techniques

Activity 1: Cranial Nerve Examination

 Perform a detailed assessment of the cranial nerves, including tests for visual fields, facial sensation, and motor functions, to identify any abnormalities in neurological function.

• Activity 2: Reflex Testing and Motor Coordination

 Conduct reflex tests (e.g., deep tendon reflexes) and assess motor coordination through tasks such as finger-to-nose tests, focusing on identifying signs of neurological impairment.

Unit 2: Assessment of Neuromuscular Disorders

• Activity 1: Muscle Tone and Spasticity Evaluation

 Evaluate muscle tone and spasticity in patients with neuromuscular disorders, using techniques such as the Modified Ashworth Scale, to assess the severity of spasticity and plan appropriate interventions.

Activity 2: Gait Analysis in Neurological Patients

Perform gait analysis on patients with neurological conditions (e.g., stroke,
 Parkinson's disease), focusing on identifying deviations and planning corrective therapeutic interventions.

Unit 3: Neurosurgical Patient Care and Rehabilitation

• Activity 1: Post-Operative Care in Neurosurgical Patients

 Participate in the post-operative care of neurosurgical patients, focusing on monitoring neurological status, managing complications, and early mobilization techniques.

• Activity 2: Rehabilitation Exercises for Neurosurgical Recovery

 Design and implement rehabilitation exercise programs for patients recovering from neurosurgery, targeting the restoration of function, strength, and coordination.

Unit 4: Electrodiagnostic Studies in Neurology

Activity 1: Nerve Conduction Studies (NCS)

 Observe and participate in nerve conduction studies, understanding how to measure the speed and strength of nerve signals to diagnose nerve damage or dysfunction.

Activity 2: Electromyography (EMG) Techniques

 Learn and practice the basics of electromyography, focusing on the placement of electrodes, signal interpretation, and its use in diagnosing neuromuscular disorders.

Unit 5: Management of Neurological Emergencies

Activity 1: Handling Acute Stroke Cases

 Simulate the emergency management of acute stroke cases, including rapid neurological assessment, administration of first aid, and understanding the physiotherapist's role in early intervention.

Activity 2: Seizure Management and Patient Safety

 Practice the management of seizures, including patient positioning, ensuring safety, and providing appropriate care during and after a seizure event.

Unit 6: Advanced Neurological Rehabilitation Techniques

Activity 1: Bobath Concept Application in Neurorehabilitation

 Apply the Bobath concept in the rehabilitation of patients with neurological impairments, focusing on techniques to facilitate normal movement patterns and reduce abnormal muscle tone.

Activity 2: Neuroplasticity and Task-Oriented Training

 Design and implement task-oriented training programs that leverage neuroplasticity principles to help patients recover lost functions through repetitive, goal-directed activities.

BVPT-524: Project-V

Project 1: Advanced Techniques in Manual Therapy for Complex Cases

• **Objective:** Explore and apply advanced manual therapy techniques for complex musculoskeletal conditions.

• Activities:

1. Research and implement advanced manual therapy techniques (e.g., myofascial release, deep tissue mobilization) for a complex case study.

2. Evaluate patient outcomes such as pain reduction, range of motion, and functional improvement through pre- and post-treatment assessments.

Project 2: Rehabilitation Strategies for Post-Stroke Recovery

• **Objective:** Develop and assess a comprehensive rehabilitation program for stroke survivors.

• Activities:

- 1. Design a multi-faceted rehabilitation plan incorporating exercises, functional training, and assistive devices for stroke patients.
- 2. Implement the program and monitor progress in motor function, daily activities, and quality of life.

Project 3: Physiotherapy Approaches in Managing Chronic Obstructive Pulmonary Disease (COPD)

- Objective: Investigate and apply physiotherapy interventions for managing COPD.
- Activities:
 - 1. Develop a respiratory physiotherapy program focusing on techniques like pursed-lip breathing and diaphragmatic breathing.
 - 2. Assess the effectiveness of the program on improving respiratory function, exercise tolerance, and patient well-being.

Project 4: Impact of Physiotherapy on Postural Control and Balance

• **Objective:** Study the effects of physiotherapy interventions on postural control and balance in patients with balance disorders.

Activities:

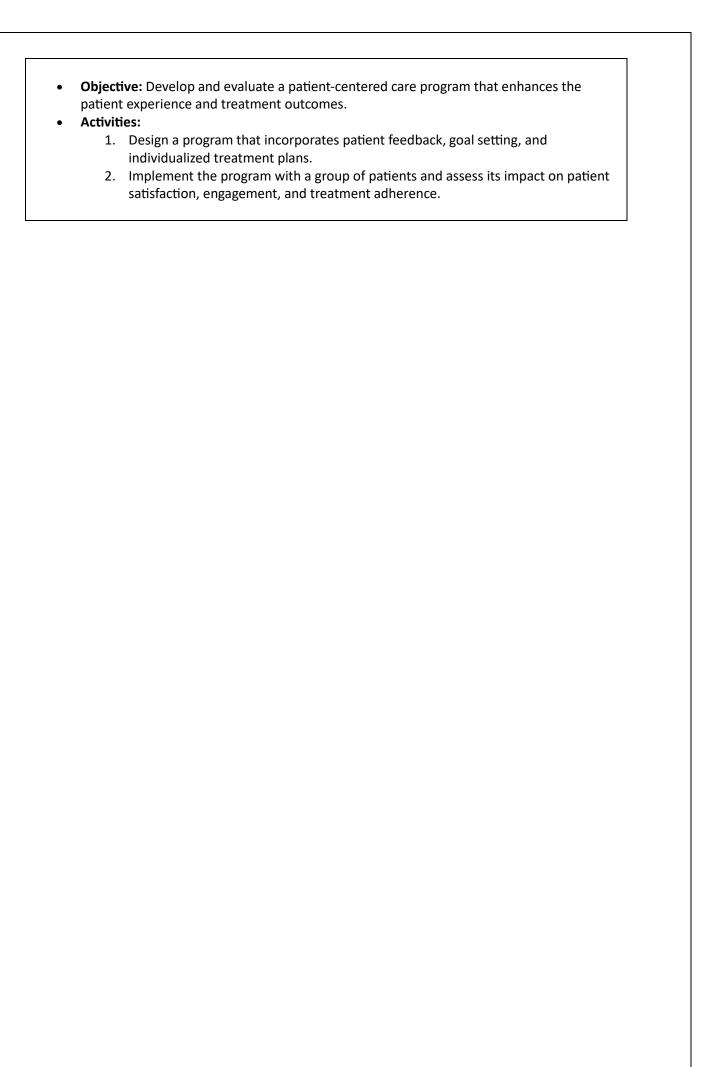
- 1. Create a balance training program targeting specific deficits identified in patients with balance disorders.
- 2. Evaluate the impact of the program on balance, gait stability, and fall risk through standardized assessment tools.

Project 5: Evaluation of Physiotherapy in Pediatric Developmental Disorders

• **Objective:** Assess the role of physiotherapy in treating pediatric developmental disorders such as cerebral palsy or developmental delay.

Activities:

- 1. Design a physiotherapy intervention plan tailored for a specific pediatric developmental disorder.
- 2. Implement the plan and track improvements in motor skills, coordination, and overall development in pediatric patients.


Project 6: Evidence-Based Practice in Physiotherapy: Literature Review and Application

• **Objective:** Conduct a literature review on evidence-based physiotherapy practices and apply findings to a clinical scenario.

Activities:

- 1. Review current literature on evidence-based physiotherapy practices for a specific condition (e.g., low back pain, sports injuries).
- 2. Apply the findings to develop and present a clinical treatment plan, demonstrating how evidence supports the chosen interventions.

Project 7: Patient-Centered Care in Physiotherapy: Designing and Implementing a Program

Semester VI

BVPT-601: Physiotherapy in Cardiorespiratory & General Conditions

Unit 1: Introduction to Cardiorespiratory Physiotherapy

Overview of Cardiorespiratory Conditions

- o Basic anatomy and physiology of the cardiovascular and respiratory systems
- o Common cardiorespiratory conditions and their impact on function

• Assessment Techniques

- Evaluation of cardiorespiratory function (e.g., auscultation, spirometry, exercise testing)
- Clinical assessment and patient history

Unit 2: Physiotherapy for Chronic Obstructive Pulmonary Disease (COPD)

Pathophysiology and Clinical Presentation

o Understanding COPD, its stages, and symptoms

Physiotherapy Management

- o Breathing exercises, airway clearance techniques, and pulmonary rehabilitation
- o Exercise prescription and patient education

• Case Studies and Practical Application

o Designing and implementing a physiotherapy program for COPD patients

Unit 3: Physiotherapy for Asthma and Other Respiratory Conditions

Asthma Management

- o Pathophysiology, triggers, and treatment approaches
- o Role of physiotherapy in asthma management

• Physiotherapy Techniques

- o Techniques for asthma control (e.g., breathing retraining, relaxation techniques)
- o Management of other respiratory conditions such as cystic fibrosis

• Practical Exercises and Protocols

 Developing and implementing physiotherapy protocols for asthma and related conditions

Unit 4: Physiotherapy in Cardiovascular Conditions

• Understanding Cardiovascular Diseases

- Common cardiovascular conditions (e.g., coronary artery disease, heart failure)
- Risk factors and clinical implications

• Physiotherapy Interventions

- o Exercise therapy, cardiac rehabilitation, and patient education
- o Post-myocardial infarction (MI) care and rehabilitation

• Practical Application

Designing individualized exercise programs for cardiovascular patients

Unit 5: Physiotherapy in Post-Surgical Cardiac Care

Post-Surgical Recovery

- Management of patients following cardiac surgeries (e.g., bypass surgery, valve replacement)
- Post-operative care and physiotherapy interventions

Rehabilitation Protocols

Early mobilization, breathing exercises, and progressive exercise programs

• Case Studies and Patient Management

o Implementing physiotherapy protocols for post-surgical cardiac patients

Unit 6: General Conditions and Physiotherapy Interventions

Management of General Medical Conditions

- Overview of various general medical conditions (e.g., diabetes, hypertension)
- o Impact on physical function and quality of life

Physiotherapy Techniques

- o Exercise therapy, patient education, and lifestyle modification
- o Role of physiotherapy in chronic disease management

Practical Exercises and Protocols

 Designing and implementing physiotherapy programs for general medical conditions

Unit 7: Multidisciplinary Approach and Patient Education

Integrative Care

- Coordination with other healthcare professionals (e.g., doctors, dietitians)
- o Collaborative approaches to patient care

• Patient Education and Self-Management

- Educating patients about their conditions, treatment plans, and self-management strategies
- o Promoting adherence to physiotherapy and lifestyle changes

• Practical Skills Development

- o Developing patient education materials and resources
- o Conducting workshops and group sessions for patient education

BVPT-602: Physiotherapeutic Nutrition & Health

Unit 1: Introduction to Nutrition and Health

Fundamentals of Nutrition

- o Basic nutrients: carbohydrates, proteins, fats, vitamins, and minerals
- o Role of nutrients in health and disease

Nutrition and Physiotherapy

- Relationship between nutrition and physical therapy outcomes
- o Impact of nutrition on recovery and rehabilitation

Unit 2: Nutritional Assessment and Planning

Nutritional Assessment Techniques

- Methods for assessing dietary intake and nutritional status (e.g., dietary recall, food diaries)
- o Tools and techniques for evaluating nutritional needs

• Designing Nutritional Plans

- o Developing individualized nutritional plans for different health conditions
- o Integrating nutritional recommendations into physiotherapy treatment plans

Unit 3: Nutrition in Musculoskeletal Health

• Role of Nutrition in Bone and Joint Health

- o Key nutrients for musculoskeletal health (e.g., calcium, vitamin D, protein)
- o Impact of nutrition on bone density and joint function

• Managing Common Musculoskeletal Conditions

- Nutritional strategies for conditions such as osteoarthritis, osteoporosis, and sports injuries
- Case studies and practical applications

Unit 4: Nutrition in Cardiovascular and Respiratory Health

Cardiovascular Health and Nutrition

- Nutritional approaches to managing cardiovascular diseases (e.g., hypertension, heart disease)
- o Impact of diet on cardiovascular health and recovery

Respiratory Health and Nutrition

- o Role of nutrition in managing respiratory conditions (e.g., COPD, asthma)
- Nutritional interventions for improving respiratory function

Unit 5: Nutritional Considerations in Chronic Diseases

• Nutrition and Chronic Disease Management

- Impact of chronic diseases on nutritional requirements (e.g., diabetes, chronic kidney disease)
- o Developing dietary interventions for chronic disease management

• Practical Applications

- o Designing meal plans and dietary guidelines for patients with chronic conditions
- Monitoring and evaluating the effectiveness of nutritional interventions

Unit 6: Sports Nutrition and Performance

• Nutritional Needs for Athletes

- Understanding the nutritional requirements of athletes and physically active individuals
- Role of nutrition in enhancing performance and recovery

Developing Sports Nutrition Plans

- Creating individualized nutrition plans for athletes
- o Case studies of sports nutrition and its impact on performance

Unit 7: Integrative Approach and Patient Education

Integrating Nutrition into Physiotherapy

- Collaborative approaches to combining nutritional and physiotherapeutic interventions
- Case studies of successful integration

. Patient Education and Counseling

- Strategies for educating patients about the importance of nutrition in their health and recovery
- o Developing educational materials and resources for patients

BVPT-603: Pediatrics Nutrition and Health

Unit 1: Introduction to Pediatric Nutrition

• Fundamentals of Pediatric Nutrition

- o Growth and development stages in children
- Nutritional needs at different stages (infancy, childhood, adolescence)

• Dietary Guidelines and Recommendations

- o Recommended dietary allowances (RDAs) for children
- Nutritional guidelines for healthy growth and development

Unit 2: Nutritional Assessment in Pediatrics

Assessing Nutritional Status

- Techniques for evaluating dietary intake and growth patterns (e.g., growth charts, BMI)
- o Identifying signs of nutritional deficiencies and imbalances

Screening Tools and Methods

- o Use of screening tools and questionnaires for pediatric nutrition assessment
- o Interpreting assessment results to guide dietary interventions

Unit 3: Nutrition and Growth Disorders

Common Growth Disorders

- o Nutritional causes of growth disorders (e.g., stunting, wasting)
- o Role of nutrition in managing and preventing growth-related issues

Dietary Interventions for Growth Disorders

- Developing nutritional strategies for children with growth disorders
- Case studies and practical applications

Unit 4: Nutrition in Pediatric Chronic Conditions

Managing Chronic Conditions

- Nutritional needs for chronic pediatric conditions (e.g., asthma, diabetes, cystic fibrosis)
- o Dietary modifications and interventions for managing chronic conditions

• Case Studies and Practical Applications

 Practical examples of nutritional management for children with chronic health issues

Unit 5: Pediatric Obesity and Metabolic Health

Understanding Pediatric Obesity

- o Causes and consequences of obesity in children
- o Impact of nutrition and physical activity on obesity management

• Developing Nutrition Plans

- o Creating individualized nutrition plans for obesity prevention and management
- Evaluating and adjusting dietary interventions for effectiveness

Unit 6: Nutrition in Pediatric Developmental Disorders

• Nutritional Needs in Developmental Disorders

 Special dietary requirements for conditions such as autism spectrum disorder (ASD) and ADHD Role of nutrition in supporting developmental milestones and behavior management

• Integrative Approaches

 Collaborative strategies for integrating nutrition with therapeutic interventions for developmental disorders

Unit 7: Family and Community-Based Nutrition Education

Educating Families and Caregivers

- o Strategies for educating parents and caregivers about pediatric nutrition
- o Developing resources and tools for effective communication

• Community Nutrition Programs

- o Designing and implementing community-based nutrition programs for children
- o Evaluating the impact of community interventions on pediatric health

BVPT-621: Practical- Physiotherapy in Cardiorespiratory & General Conditions

Unit 1: Cardiorespiratory Assessment

• Activity 1: Respiratory Function Testing (Spirometry)

 Perform spirometry to assess lung function, including measurements of forced vital capacity (FVC) and forced expiratory volume (FEV1), and interpret the results to identify respiratory conditions.

• Activity 2: Cardiovascular Assessment Techniques

 Conduct cardiovascular assessments, including heart rate, blood pressure, and oxygen saturation monitoring, and interpret the data in the context of patient health status and exercise tolerance.

Unit 2: Chest Physiotherapy Techniques

Activity 1: Postural Drainage and Percussion

 Practice postural drainage techniques combined with percussion to facilitate the clearance of respiratory secretions, focusing on patient positioning and technique effectiveness.

• Activity 2: Breathing Exercises for Respiratory Rehabilitation

 Teach and perform various breathing exercises, such as diaphragmatic and pursedlip breathing, aimed at improving lung expansion and reducing dyspnea in patients with respiratory conditions.

Unit 3: Exercise Prescription for Cardiorespiratory Fitness

Activity 1: Designing Aerobic Exercise Programs

 Develop and implement individualized aerobic exercise programs for patients with cardiovascular or respiratory conditions, considering intensity, duration, and progression.

Activity 2: Monitoring Exercise Response in Cardiorespiratory Patients

 Monitor patients' physiological responses (e.g., heart rate, blood pressure, oxygen saturation) during exercise sessions, ensuring safety and effectiveness in improving cardiorespiratory fitness.

Unit 4: Physiotherapy Management in Acute and Chronic Conditions

• Activity 1: Acute Care Physiotherapy Interventions

 Participate in physiotherapy interventions for patients in acute care settings, such as post-surgery or post-trauma, focusing on early mobilization, respiratory care, and pain management.

• Activity 2: Long-Term Management of Chronic Conditions

 Design and implement long-term physiotherapy management plans for patients with chronic conditions, such as COPD or heart failure, emphasizing maintenance of function and quality of life.

Unit 5: Pediatric and Geriatric Cardiorespiratory Care

Activity 1: Pediatric Chest Physiotherapy

 Practice chest physiotherapy techniques specifically tailored for pediatric patients, addressing challenges such as positioning and cooperation, while ensuring safety and comfort.

Activity 2: Geriatric Cardiorespiratory Rehabilitation

 Develop and implement rehabilitation programs for geriatric patients with cardiorespiratory conditions, considering factors like comorbidities, frailty, and exercise tolerance.

Unit 6: Emergency Care and Advanced Techniques

Activity 1: Emergency Response in Cardiorespiratory Distress

 Simulate emergency scenarios involving cardiorespiratory distress, practicing rapid assessment, airway management, and the application of emergency physiotherapy techniques.

• Activity 2: Non-Invasive Ventilation and Physiotherapy

 Learn and apply techniques for non-invasive ventilation support (e.g., CPAP, BiPAP) in patients with respiratory failure, understanding the role of physiotherapy in optimizing ventilation and patient comfort.

BVPT-622: Practical- Physiotherapeutic Nutrition & Health

Unit 1: Fundamentals of Nutrition in Physiotherapy

• Activity 1: Nutritional Assessment Techniques

 Perform a comprehensive nutritional assessment of patients, using tools like BMI calculations, dietary recalls, and nutrient analysis to evaluate nutritional status and identify areas for improvement.

• Activity 2: Development of Personalized Nutrition Plans

 Create individualized nutrition plans tailored to patients' specific health conditions and physiotherapy goals, focusing on enhancing recovery, promoting overall health, and supporting physical activity.

Unit 2: Role of Nutrition in Injury Prevention and Recovery

Activity 1: Nutritional Strategies for Injury Prevention

 Develop and apply nutritional strategies to prevent common injuries in athletes and active individuals, focusing on hydration, micronutrient support, and antiinflammatory foods.

• Activity 2: Nutrition for Enhanced Tissue Repair

 Design and implement nutrition plans that facilitate tissue repair and recovery post-injury, emphasizing the importance of proteins, vitamins, and minerals in the healing process.

Unit 3: Managing Chronic Conditions with Nutrition

• Activity 1: Dietary Management of Cardiovascular Diseases

 Create dietary intervention plans for patients with cardiovascular diseases, focusing on reducing risk factors like hypertension and hyperlipidemia through tailored dietary changes.

• Activity 2: Nutritional Support for Diabetic Patients

 Design and monitor nutrition plans for diabetic patients, focusing on glycemic control, carbohydrate management, and integrating diet with exercise in their physiotherapy regimen.

Unit 4: Nutrition and Exercise Performance

Activity 1: Pre- and Post-Exercise Nutrition

 Plan and evaluate the effectiveness of pre- and post-exercise nutrition strategies to optimize performance and recovery, with emphasis on macronutrient timing and hydration.

• Activity 2: Evaluating the Role of Supplements

 Assess the role of nutritional supplements (e.g., protein powders, creatine, vitamins) in supporting exercise performance and recovery, and discuss appropriate and safe use in different patient populations.

Unit 5: Nutritional Considerations in Special Populations

Activity 1: Nutrition Planning for the Elderly

 Develop nutrition plans addressing the unique needs of elderly patients, focusing on maintaining muscle mass, bone health, and managing chronic conditions through diet.

• Activity 2: Pediatric Nutrition in Physiotherapy

 Design dietary plans for pediatric patients, ensuring they meet the nutritional requirements for growth and development, while integrating these plans with their physiotherapy treatment.

Unit 6: Integrating Nutrition with Physiotherapy Practice

Activity 1: Case Studies in Nutritional Support for Physiotherapy

 Analyze case studies where nutrition played a key role in physiotherapy outcomes, identifying the best practices and key takeaways for integrating nutrition into patient care.

Activity 2: Collaborative Practice: Working with Dietitians

 Engage in simulated interdisciplinary sessions where physiotherapists collaborate with dietitians to develop comprehensive care plans that address both the nutritional and physical rehabilitation needs of patients.

BVPT-623: Practical- Pediatrics Nutrition and Health

Unit 1: Nutritional Assessment in Pediatric Populations

Activity 1: Growth Monitoring and Nutritional Assessment

 Perform growth monitoring using growth charts and anthropometric measurements to assess nutritional status in pediatric patients, identifying malnutrition or obesity risks.

Activity 2: Dietary Intake Analysis for Children

 Conduct dietary intake assessments through food diaries or recall methods, analyzing the nutritional adequacy of children's diets based on age-specific requirements.

Unit 2: Nutrition in Pediatric Growth and Development

Activity 1: Nutritional Requirements Across Developmental Stages

 Evaluate and plan diets that meet the specific nutritional needs of infants, toddlers, and adolescents, focusing on critical nutrients like calcium, iron, and vitamins.

Activity 2: Addressing Nutritional Deficiencies in Children

 Develop intervention strategies to address common nutritional deficiencies in children, such as iron-deficiency anemia or vitamin D deficiency, integrating diet and supplementation.

Unit 3: Pediatric Nutrition in Special Conditions

Activity 1: Dietary Management of Pediatric Obesity

 Design and implement dietary management plans for children with obesity, focusing on balanced nutrition, portion control, and promoting physical activity.

Activity 2: Nutrition for Pediatric Chronic Conditions

 Create nutrition plans for children with chronic conditions such as cystic fibrosis, celiac disease, or diabetes, emphasizing tailored dietary approaches to manage symptoms and support growth.

Unit 4: Feeding Strategies and Challenges in Pediatrics

Activity 1: Techniques for Managing Picky Eaters

 Develop and apply strategies to improve the nutritional intake of picky eaters, focusing on creating balanced meals and encouraging healthy eating habits in young children.

Activity 2: Managing Pediatric Feeding Disorders

 Practice techniques for managing pediatric feeding disorders, including oral motor exercises, texture modifications, and the use of assistive feeding devices.

Unit 5: Nutritional Education and Counseling for Families

Activity 1: Educating Parents on Pediatric Nutrition

 Create and deliver educational sessions for parents on the importance of balanced nutrition in children's growth and development, including practical tips for healthy meal planning.

• Activity 2: Developing Nutritional Counseling Techniques

 Practice nutritional counseling techniques to effectively communicate dietary advice to children and their families, considering cultural preferences and family dynamics.

Unit 6: Integrating Nutrition with Pediatric Physiotherapy

Activity 1: Nutrition Support in Pediatric Rehabilitation

- Design nutrition plans that complement physiotherapy goals in pediatric patients, particularly in cases of developmental delays, cerebral palsy, or post-surgical recovery.
- Activity 2: Case Studies in Pediatric Nutrition and Physiotherapy
 - Analyze and present case studies where nutrition and physiotherapy interventions have been successfully integrated to improve outcomes in pediatric patients.

BVPT-624: Project-VI

Project 1: Innovations in Physiotherapy for Geriatric Rehabilitation

- **Objective:** Explore and apply innovative physiotherapy techniques specifically designed for elderly patients.
- Activities:
 - 1. Develop a program incorporating new technologies or methods (e.g., virtual reality, wearable sensors) for geriatric rehabilitation.
 - 2. Implement and evaluate the program's effectiveness on mobility, balance, and overall quality of life in elderly patients.

Project 2: Assessment and Management of Complex Orthopedic Conditions

- **Objective:** Address complex orthopedic conditions through comprehensive physiotherapy assessment and management strategies.
- Activities:
 - 1. Design a detailed assessment protocol for a complex orthopedic condition (e.g., multiple fractures, joint replacements).
 - 2. Develop and apply a tailored rehabilitation plan, monitoring progress and functional outcomes.

Project 3: Integrative Approaches in Pain Management

- **Objective:** Investigate and implement integrative physiotherapy approaches for managing chronic pain.
- Activities:
 - 1. Create a multidisciplinary pain management plan incorporating physiotherapy techniques, complementary therapies, and patient education.
 - 2. Evaluate the effectiveness of the integrative approach in improving pain levels, functional ability, and patient satisfaction.

Project 4: Physiotherapy in Sports Performance Enhancement

- **Objective:** Develop strategies for using physiotherapy to enhance sports performance and prevent injuries.
- Activities:
 - 1. Design a performance enhancement program including strength training, flexibility exercises, and sports-specific drills.

2. Assess the program's impact on athletic performance, injury prevention, and overall physical fitness.

Project 5: Impact of Telehealth on Physiotherapy Practice

• **Objective:** Explore the effectiveness of telehealth in delivering physiotherapy services and improving patient outcomes.

Activities:

- 1. Develop a telehealth program for delivering physiotherapy consultations and exercises
- 2. Evaluate the program's effectiveness in terms of patient engagement, satisfaction, and clinical outcomes compared to traditional in-person sessions.

Project 6: Comprehensive Review of Physiotherapy in Cardiovascular Rehabilitation

- **Objective:** Analyze and apply physiotherapy techniques for cardiovascular rehabilitation.
- Activities:
 - Conduct a comprehensive review of current physiotherapy practices in cardiovascular rehabilitation, focusing on exercise protocols and patient management.
 - 2. Implement a cardiovascular rehabilitation program and assess its impact on patients' functional capacity, cardiovascular health, and recovery.

Project 7: Designing a Research Study on Emerging Physiotherapy Techniques

• **Objective:** Conduct research on new and emerging physiotherapy techniques and their effectiveness.

Activities:

- 1. Design a research study to evaluate a new physiotherapy technique or intervention
- 2. Collect and analyze data, and present findings on the technique's efficacy, benefits, and potential for integration into standard practice.